
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH YEAR 1

Sharing Memory between Byzantine Processes
using Policy-Enforced Tuple Spaces

Alysson Neves Bessani, Miguel Correia Member, IEEE, Joni da Silva Fraga Member, IEEE and Lau Cheuk Lung

Abstract— Despite the large amount of Byzantine fault-tolerant
algorithms for message-passing systems designed through the
years, only recently algorithms for the coordination of processes
subject to Byzantine failures using shared memory have ap-
peared. This paper presents a new computing model in which
shared memory objects are protected by fine-grained access
policies, and a new shared memory object, the Policy-Enforced
Augmented Tuple Space (PEATS). We show the benefits of this
model by providing simple and efficient consensus algorithms.
These algorithms are much simpler and require less shared
memory operations, using also less memory bits than previous
algorithms based on ACLs and sticky bits. We also prove that
PEATS objects are universal, i.e., that they can be used to
implement any other shared memory object, and present lock-
free and wait-free universal constructions.

Index Terms— Byzantine fault-tolerance, shared memory algo-
rithms, tuple spaces, consensus, universal constructions.

I. INTRODUCTION

DESPITE the large amount of Byzantine fault-tolerant algo-
rithms for message-passing systems designed through the

years (e.g., [1], [2], [3], [4], [5], [6], [7], [8]), only recently
algorithms for the coordination of processes subject to Byzantine
failures using shared memory have appeared [9], [10], [11]. This
line of research complements the current availability of several
solutions for the construction of dependable services on message-
passing distributed systems subject to Byzantine failures [1], [2],
[3], [4], [6], [8]. These services can be seen as shared memory
objects emulated over message-passing systems, and the clients
that access the services can be seen as the processes accessing the
shared memory. The motivation for this research is to answer a
fundamental question: what is the power of these shared memory
objects to coordinate processes that can fail in a Byzantine way,
i.e., arbitrarily [11]? From a more practical point of view, we
are interested in knowing if it is possible to elect a leader
among these processes or to solve fundamental problems like
consensus or mutual exclusion even if some processes are faulty.
A complementary question is how costly is it to solve these
problems in terms of resilience and shared memory bits and
operations required? These questions are specially relevant since
Byzantine failures can be used to model the behavior of malicious
hackers and malware [12].

The first works in this area made several important theoretical
contributions. They have shown that simple objects like registers
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and sticky bits [13] when protected by access control lists (ACLs)
are enough to solve consensus [9], that the optimal resilience for
strong consensus is n≥ 3t +1 in this model [9], [11] (t is an upper
bound on the number of faulty processes and n the total number
of processes), and that sticky bits with ACLs are universal, i.e.,
they can be used to implement any shared memory object [11],
to state only some of those contributions.

Despite the undeniable importance of these theoretical results,
on the practical side these works also show the limitations of
combining simple objects like sticky bits and registers with ACLs:
the amount of objects required and the amount of requested
operations in these objects is enormous, making the developed
algorithms impractical for real systems. The reason for this is
that the algorithms fall in a combinatorial problem. There are n
processes and k shared memory objects for which we have to
setup ACLs associating objects with processes in such way that
faulty processes cannot invalidate the actions of correct processes
[9].

The present paper contributes to advancing the study of Byzan-
tine shared memory by modifying this model in two aspects.
First, the paper proposes the use of fine-grained security policies
to control the access to shared memory objects. These policies
allow us to specify when an invocation to an operation in a shared
memory object is to be allowed or denied in terms of who invokes
the operation, what are the parameters of the invocation and what
is the current state of the object. We call the objects protected by
these policies policy-enforced objects (PEOs).

Second, the paper uses only one type of shared memory object:
an augmented tuple space [14], [15]. This object, which is an
extension of the tuple space introduced in LINDA [16], stores
generic data structures called tuples. It provides operations for the
inclusion, removal, reading and conditional inclusion of tuples.

The paper shows that policy-enforced augmented tuple spaces
(PEATS) are an attractive solution for the coordination of Byzan-
tine processes. The paper provides algorithms that are much
simpler than previous ones based on sticky bits and ACLs [9],
[11]. They are also more efficient in terms of number of bits,
objects and operations needed to solve a certain problem. This
comparison of apparently simple objects like sticky bits with
apparently complex objects like tuple spaces may seem unfair but
in reality the implementation of linearizable versions of both (the
case we consider here) involves similar protocols with similar
complexities when considering shared memory emulation over
message-passing [17]. For instance, both can be implemented
similarly using the above mentioned Byzantine fault-tolerant
systems based on state machine replication [2], [3], [4].

The results presented have two main consequences on the broad
Byzantine fault tolerance research area. First, they show that a
well designed shared memory object makes it much easier to
program synchronization protocols in the asynchronous Byzantine
fault model. Second, they show that fine-grained policy enforce-
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ment is a much more efficient model for protecting dependable
services/objects than ACLs, which are the standard mechanism
used to protect Byzantine fault-tolerant objects from faulty clients
that access them.

A. Summary of the Contributions

The main contributions of the paper are the following:
• we present a new computing model where shared memory

objects are protected by fine-grained access policies;
• we present a new shared memory object, the policy-enforced

augmented tuple space (PEATS);
• we show the benefits of this model by providing simple and

efficient consensus algorithms with resilience n≥ 3t +1, and
we prove that this is the optimal resilience for strong binary
consensus in our system model; our strong binary consensus
algorithm uses only O((n+ t) logn) bits as compared to the
(n+1)

(2t+1
t

)
sticky bits of the algorithm in [9];

• we show also how the PEATS can be used to solve multi-
valued strong consensus and default multi-valued consensus
in our model;

• we prove that PEATS are universal [18], i.e., that they can
be used to implement any other shared memory object, by
providing two universal constructions based on PEATS: a
uniform lock-free construction and a wait-free construction.
The wait-free construction is the first for a model in which
the memory is shared by Byzantine processes (there is only
one previous universal construction for this case and it is
t-resilient, not wait-free [11]).

B. Paper Organization

The paper is organized as follows. Section II presents the
system model and the augmented tuple space. Policy-enforced
objects are presented in Section III. Some details about the fea-
sibility of the Policy-Enforced Augmented Tuple Space (PEATS)
are presented in Section IV. Section V presents consensus algo-
rithms based on this object. Section VI provides the two universal
constructions based on a PEATS object. Finally, Sections VII and
VIII summarize related work and present conclusions.

II. MODEL AND DEFINITIONS

A. System Model

The model of computation consists of an asynchronous set of
n processes P = {p1, p2, ..., pn} that communicate via a set of
k shared memory objects O = {o1, ...,ok} (e.g., registers, sticky
bits, tuple spaces). Each of these processes may be either faulty or
correct. A correct process is constrained to obey its specification,
while a faulty process, also called a Byzantine process [7], can
deviate arbitrarily from it. In the same way as previous works
on Byzantine shared memory [9], [10], [11], we assume that
a malicious process cannot impersonate a correct process when
invoking an operation on a shared memory object. This limitation
is important in our model since we will use a reference monitor
[19] to enforce the access policy (see Section IV). This monitor
must know the correct identity of the process invoking operations
on the object in order to grant or deny access for the invocation.
It is worth to notice that without authenticated access to shared
memory it is impossible to implement access control, and thus it
is impossible to solve any non-trivial problem in the Byzantine

asynchronous setting since a faulty process can always write
invalid/inconsistent values to the memory.

A configuration of a shared memory distributed system with
n processes communicating using k shared memory objects is a
vector C = 〈q1, ...,qn,r1, ...,rk〉 where qi is the state of the process
pi and ri is the state of the object oi. A step of a process is an
action of this process that changes the system configuration (the
state of a process and/or object). An execution of a distributed
system is an infinite sequence C0,a0,C1,a1, ... where C0 is an
initial configuration and each ai is the step that changes the system
state from Ci to Ci+1.

Each shared memory object is accessed through a set of oper-
ations made available through its interface. An object operation
is executed by a process when it makes an invocation to that
operation. An operation ends when the process receives a reply for
the corresponding invocation. An operation that has been invoked
but not replied to is called a pending operation. We assume that
all processes (even the faulty ones) invoke an operation on a
shared memory object only after receiving the reply for their last
operation on this object. This condition is sometimes called well
formedness or correct interaction [17]1.

The shared memory objects used in this paper are assumed to
be dependable (they do not deviate from their specification) and
to satisfy the linearizability correctness condition [20]: although
they are accessed concurrently, every operation executed on them
appears to take effect instantaneously at some point between its
invocation and reply, in such a way that concurrent operations
appear to be executed sequentially.

B. Termination Conditions

In terms of liveness, all operations provided by the shared
memory objects used in this paper satisfy one of the following
termination conditions (x is a shared memory object):
• lock-freedom: an operation x.op is lock-free if, when invoked

by a correct process at any point in an execution in which
there are pending operations invoked by correct processes,
some operation (either x.op or any of the pending operations)
will be completed;

• t-resilience [11]: an operation x.op is t-resilient if, when
executed by a correct process, it eventually completes in any
execution in which at least n− t correct processes infinitely
often have a pending invocation for some operation of x;

• t-threshold [11]: an operation x.op is t-threshold if, when
executed by a correct process, it eventually completes in any
execution in which at least n− t correct processes invoke
x.op;

• wait-freedom [18]: an operation x.op is wait-free if, when
executed by a correct process, it eventually completes in any
execution (despite the failure of other processes).

The main difference between t-threshold and t-resilience is the
fact that in the first, an operation is guaranteed to complete only
if n− t correct processes invoke the same operation and in the
second, an operation completes only if n−t correct processes keep
invoking some operation on the object. Notice that t-threshold
implies t-resilience, but not vice-versa.

For any of these liveness conditions, we say that an object
satisfies the condition if all its operations satisfy the condition.

1This is just a simplification to improve the presentation of the algorithms.
The enforcement of this assumption can be easily implemented making the
objects ignore invocations made by processes that have pending invocations.
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C. Augmented Tuple Space

The tuple space coordination model, originally introduced
in the LINDA programming language [16], allows distributed
processes to interact through a shared memory object called a
tuple space, where generic data structures called tuples are stored
and retrieved.

Each tuple is a sequence of typed fields. A tuple in which all
fields have their values defined is called an entry. A tuple that
has one or more fields with undefined values is called a template
(indicated by a bar, e.g., t). A undefined value can be represented
by the wildcard symbol ‘∗’ (meaning “any value”) or by a formal
field, denoted by a variable name preceded by the character ‘?’
(e.g., ?v).

The type of a tuple t is the sequence of types of each field of
t. An entry t and a template t match, denoted m(t, t), iff (i.) they
have the same type and (ii.) all defined field values of t are equal
to the corresponding field values of t. The variable in a formal
field (e.g., v in ?v) is set to the value in the corresponding field
of the entry matched to the template.

There are three basic operations on a tuple space [16]: out(t),
which outputs the entry t in the tuple space (write); in(t), which
removes a tuple that matches t from the tuple space (destructive
read); and rd(t), which is similar to in(t) but does not remove
the tuple from the space (non-destructive read). The in and rd
operations are blocking, i.e., if there is no tuple in the space that
matches the specified template, the invoking process will wait
until a matching tuple becomes available.

A common extension to this model, which we adopt in this
paper, is the inclusion of non-blocking variants of these read
operations, called inp and rdp respectively. These operations work
in the same way as their blocking versions but return even if
there is no matching tuple for the specified template in the space
(signaling the operation’s result with a boolean value). Notice that
according to the definitions above, the tuple space works just like
an associative memory: tuples are accessed through their contents,
not using addresses. This feature leads to a simple programming
model where more expressive interactions can be described with
very few lines of code.

In Herlihy’s hierarchy of shared memory objects [18], the tuple
space object has consensus number 2 [15], i.e., it can be used to
solve consensus between at most two processes. In this paper
we want to present algorithms to solve consensus and build
universal constructions for any number of processes, therefore
we need universal shared memory objects (consensus number n)
[18], [17]. Therefore, we use an augmented tuple space [14], [15]
which provides an extra conditional atomic swap operation. This
operation, denoted by cas(t, t) for a template t and a entry t,
works like an atomic (indivisible) execution of the instruction:

if ¬rdp(t) then out(t)

The meaning of this instruction is “if the reading of t fails,
insert the entry t in the space”2. This operation returns true –
we say it succeeded – if the tuple is inserted in the space, and
false otherwise. The augmented tuple space is a universal shared
memory object, since it can solve wait-free consensus trivially in
the crash fault model [14], [15] as well as in the Byzantine model
(as will show in this paper) for any number of processes.

2Notice that the meaning of the tuple space cas is the opposite of the
well known register compare&swap operation [17], where the object state is
modified if its current state is equal to the value compared.

All algorithms proposed in this paper are based on a single
linearizable wait-free augmented tuple space.

III. POLICY-ENFORCED OBJECTS

Previous work on objects shared by Byzantine processes con-
sider that the access to operations in these objects is protected
by ACLs [9], [10], [11]. In that model, each operation provided
by an object is associated to a list of processes that have
access to that operation. Only processes that have access to an
operation can execute it. This model requires a kind of reference
monitor [19] to protects the objects from unauthorized access.
The implementation of this monitor is not problematic since,
in general, it is assumed that the shared memory objects are
implemented using replicated servers [1], [2], [3], [4], [6], [8],
which have processing power.

In this paper, we also assume this kind of implementation but
extend the notion of protection to more powerful security polices
than access control based on ACLs. We define policy-enforced
objects (PEOs), which are objects whose access is governed by a
fine-grained security policy. Later, we argue that the use of these
policies make possible the implementation of simple and efficient
algorithms that solve several important distributed problems, for
instance, consensus.

A reference monitor permits the execution of an operation on
a PEO if the corresponding invocation satisfies the access policy
of the object. The access policy is composed by a set of rules.
Each rule is composed by an invocation pattern and a logical
expression. An execution is allowed (predicate execute(op) set to
true) only if its associated logical expression is satisfied by the
invocation pattern. Following the principle of fail-safe defaults,
any invocation that does not fit in any rule is always denied [21].
A logical value false is returned by the operation whenever the
access is denied.

The reference monitor has access to three pieces of information
in order to evaluate if an invocation invoke(p,op) to a protected
object x can be executed:
• the invoker process identifier p;
• the operation op and its arguments;
• the current state of x.
An example of a PEO is a policy-enforced numeric atomic

register r in which only values greater than the current value
can be written and in which only processes p1, p2 and p3 can
write. The access policy for that PEO is represented in Figure 1.
We use the symbol : − taken from the PROLOG programming
language to state that the predicate in the left hand side is true if
the condition in the right hand side is true. The execute predicate
(left hand side) indicates if the operation is to be executed, and
the predicate invoke (right hand size) indicates if the operation
was invoked.

Object State r
Rread : execute(read()) :− invoke(p,read())
Rwrite: execute(write(v)) :−

invoke(p,write(v))∧ p ∈ {p1, p2, p3}∧ v > r

Fig. 1. An example of access policy for an atomic register.

In the access policy in Figure 1, we initially define the elements
of the object’s state that can be used in the rules. In this case, the
register state is specified by its current value, denoted r. Then,
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one or more access rules are defined. The first rule (Rread) says
that all register readings are allowed. The second rule (Rwrite)
states that a write(v) operation invoked by a process p, can only
be executed if (i.) p is one of the processes in the set {p1, p2, p3}
and (ii.) the value v being written is greater than the current value
of the register r. Notice that condition (i.) is nothing more than
a straightforward implementation of an ACL in our model.

IV. POLICY-ENFORCED AUGMENTED TUPLE SPACE

The algorithms presented in this paper are based on a policy-
enforced augmented tuple space object (PEATS). The implemen-
tation of this kind of object (or another PEO in general) on dis-
tributed message-passing systems could be based on interceptors
[22], that would grant or deny access to the operations according
to the access policy defined for the tuple space and the identity
of the client, which is available due to the use of authenticated
channels (implemented using standard technologies like IPSec
or SSL). A straightforward resilient implementation would be to
replicate the PEATS in a set of servers, e.g., using the CL-BFT
library [3] or any other Byzantine fault-tolerant state machine
replication support [23]. The interceptor would be deployed in
every PEATS replica to make possible the local enforcement of
policies, working as a reference monitor. The access policy could
be hard-coded in the interceptor, or a more generic policy enforcer
system like the one presented in [24] might be used. Figure 2
illustrates this design.

Reference
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Fig. 2. A Byzantine Fault-Tolerant PEATS implementation.

In this figure, it can be seen that the set of processes that
access the fault-tolerant replicated PEATS do it using a replica
coordination protocol which ensures that all requests are executed
in all PEATS replicas in the same order (usually through an
atomic multicast protocol, which is known to be equivalent
to consensus [25]). This, together with the fact that both the
augmented tuple space and the reference monitor are deterministic
objects (i.e., their outputs depend only on their previous state and
the operation issued by the client), basic voting protocols can be
executed by the processes to determine the operation results. The
DEPSPACE system [26] is a complete implementation of a PEATS
that follows the architecture described in Figure 2.

It is worth to notice that any fault-tolerant implementation
of a PEATS requires consensus for replica coordination simply
because this object has consensus number greater than one.
Otherwise, the FLP result [27] would not be valid: a distributed
system that would solve consensus in asynchronous systems (the
PEATS fault-tolerant implementation) would be built without

solving consensus. Given this note, a question that can be made
is why build synchronization algorithms based on fault-tolerant
objects built using other synchronization algorithms? There are
two answers for this question, a theoretical and a practical one.
The theoretical one is that, in this paper, as well as in the previous
ones in this field [11], [9], consensus and universal constructions
are used as reference problems to determine the power of the
model and objects used to solve it. The practical answer is that,
for many applications, it is much simpler to develop a resilient
object/service built on top of a fixed set of “controlled” servers,
and make this object available to be used by an open and unknown
set of processes that need to coordinate between themselves.

V. SOLVING CONSENSUS

In this section we illustrate the benefits of using a PEATS to
solve several variants of the consensus problem.

The consensus problem concerns a set of n processes proposing
values from a set V of possible values and trying to reach agree-
ment about a single decision value. A consensus object is a shared
memory object that encapsulates a consensus algorithm. Next, we
present algorithms to implement three kinds of consensus objects
(or, to solve three consensus variants):
• Weak Consensus [11]: A weak consensus object x is a shared

memory object with a single operation x.propose(v), with v∈
V , satisfying the properties: (Agreement) in any execution,
x.propose returns the same value, called the consensus value,
to every correct process that invokes it; (Validity) in any finite
execution in which all participating processes are correct,
if the consensus value is v, then some process invoked
x.propose(v).

• Strong Consensus [11]: A strong consensus object x is
defined by a stronger Validity condition than weak consensus
objects: (Strong Validity) if the consensus value is v, then
some correct process invoked x.propose(v).

Another variant of consensus that we define and implement in
this paper is the default (multi-valued) consensus [5], which is a
slightly weakened version of strong consensus:
• Default Consensus: A default consensus object x is defined

by a weaker Validity condition than strong consensus ob-
jects: (Default Strong Validity) The consensus value must
satisfy two conditions: (i.) if all correct processes invoke
x.propose(v), then v is the consensus value; (ii.) if the
consensus value is v, then some correct process invoked
x.propose(v) or v =⊥.

The idea behind default consensus is that the consensus value
should be a value proposed by some correct process or a default
value ⊥ /∈ V [5]. This idea is related to the quittable consensus
problem [28]. In this problem, a process can decide a “quit”
value (Q) when some failure is detected. In the default consensus
problem, the default value (⊥) can be decided even in executions
without faulty processes if not enough processes propose the same
value.

We remark that all these objects, as all other objects used in
this paper, must satisfy some of the termination conditions given
in Section II-B.

A. Weak Consensus

In a weak consensus object, the consensus value can be any of
the proposed values. With this validity condition it is perfectly
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legal that a value proposed by a faulty process becomes the
consensus value.

Algorithm 1 Weak Byzantine consensus object (process pi).
Shared variables:

1: ts = ∅ {PEATS object}
procedure x.propose(v)

2: if ts.cas(〈DECISION,?d〉,〈DECISION,v〉) then
3: d← v {decision value v inserted}
4: end if
5: return d

Algorithm 1 presents the algorithm that implements weak
consensus using a PEATS. The algorithm is very simple: a process
tries to insert its proposal in the PEATS object using the cas
operation. It succeeds only if there is no decision tuple in the
space. If there is already a decision tuple, this is the value to
be decided and returned. In the former case, line 3 is executed
setting variable d to the decision value, while in the latter it is
the cas operation that sets d.

The access policy for the PEATS used in Algorithm 1 is
presented in Figure 3. The predicate formal(x) is true if x is
a formal field, otherwise it is false. This access policy permits
only executions of the cas operation. The tuple must have two
fields, the first with a constant DECISION and the second must
be formal. Only one decision tuple can be inserted in the PEATS.

Object State T S
Rcas: execute(cas(〈DECISION,x〉,〈DECISION,y〉)) :−

invoke(p,cas(〈DECISION,x〉,〈DECISION,y〉))∧
formal(x)

Fig. 3. Access policy for the PEATS used in Algorithm 1.

Besides its simplicity and elegance, this algorithm has several
interesting properties: first it is uniform [17], i.e., it works for any
number of processes and the processes do not need to know how
many other processes are participating in the distributed com-
putation. Second, it can solve multi-valued consensus, since the
range of values proposed can be arbitrary. Finally, the algorithm
is wait-free, i.e., it always terminates despite the occurrence of
failures of any number of processes running it.

An interesting point about this algorithm is that our PEATS
with the access policy specified in Figure 3 behaves like a
persistent object, so our result is in accordance with Theorem
4.1 of [11].

Theorem 1 Algorithm 1 provides a wait-free weak consensus
object.

Proof: From the access policy, we know that the only way to
insert a tuple in the space is by invoking the cas operation. This
operation can be executed successfully only once since there is no
way to remove a tuple from the space (operations in and inp are
not allowed). This way, the Agreement property must be satisfied
since the first process that successfully executes the cas operation
will insert a DECISION tuple with its consensus value v in the
space. Other processes will read v (through the formal field ?d)
since their invocation of the cas operation will return false (the
DECISION tuple will not be inserted in the space).

The Validity property holds because, in any execution with only
correct processes, the consensus value must have been proposed
by some process (the one that inserted the DECISION tuple with
its proposal in the space). The algorithm is wait-free because the
cas operation is wait-free. �Theorem 1

B. Strong Consensus

A strong consensus object enforces the validity condition by
requiring that the consensus value be proposed by a correct
process even in the presence of faulty ones. This strict condition
results in a more complex (but still simple) algorithm. However,
this algorithm does not share some of the benefits of the algorithm
presented in the previous section:

• non-uniform: the strong consensus algorithm is not uniform
since a process has to know who are the other processes in
order to read their input values and decide a consensus value
proposed by some correct process;

• binary consensus: our algorithm solves only binary consen-
sus. This limitation is also due to the fact that a process
needs to know if a value has been proposed by one correct
process before deciding it;

• t-threshold object: the algorithm for strong consensus is not
wait-free since it requires n− t processes to take part in the
algorithm. However, the number of processes needed in our
algorithm is optimal: n ≥ 3t + 1 (see Corollary 1 in next
section).

Algorithm 2 Strong Byzantine consensus object (process pi).
Shared variables:

1: ts = ∅ {PEATS object}
procedure x.propose(v)

2: ts.out(〈PROPOSE, pi,v〉)
3: S0←∅ {set of processes that proposed 0}
4: S1←∅ {set of processes that proposed 1}
5: while |S0|< t +1∧|S1|< t +1 do
6: for all p j ∈P \ (S0∪S1) do
7: if ts.rdp(〈PROPOSE, p j,?v〉) then
8: Sv← Sv∪{p j} {p j proposed v}
9: end if

10: end for
11: end while
12: if ts.cas(〈DECISION,?d,∗〉,〈DECISION,v,Sv〉) then
13: d← v {decision value (v) inserted}
14: end if
15: return d

Algorithm 2 presents the strong binary consensus protocol. The
algorithm works as follows: a process pi first inserts its proposal
in the augmented tuple space ts using a PROPOSE tuple (line 2).
Then, pi queries ts continuously trying to read proposals (line 7)
until it finds that some value has been proposed by at least t +1
processes (loop of lines 5-11). The rationale for the amount of
t +1 is that at least one correct process must have proposed this
value, since there are at most t failed processes. The first value
that satisfies this condition is then inserted in the tuple space
using the cas operation. This commitment phase is important
since different processes can collect t +1 proposals for different
values and we must ensure that a single decision value will be
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defined. All further invocations of cas return this value (lines 12-
14).

Object State T S
Rrdp: execute(rdp(t)) :− invoke(p,rdp(t))
Rout: execute(out(〈PROPOSE, p,x〉)) :−

invoke(p,out(〈PROPOSE, p,x〉))∧
@y : 〈PROPOSE, p,y〉 ∈ T S

Rcas: execute(cas(〈DECISION,x,∗〉,〈DECISION,v,P〉)) :−
invoke(p,cas(〈DECISION,x,∗〉,〈DECISION,v,P〉))∧
formal(x)∧
|P| ≥ t +1∧
(∀q ∈ P,〈PROPOSE,q,v〉 ∈ T S)

Fig. 4. Access policy for the PEATS used in Algorithm 2.

The access policy for the PEATS used in Algorithm 2 is
presented in Figure 4. This access policy specifies that any
process can read any tuple; that each process can introduce
only one PROPOSE entry in the space; that the second field
of the template used in the cas operation must be a formal
field; and that the decision value v must appear in proposals
of at least t + 1 processes. These simple rules, that could easily
be implemented in practice, effectively constrain the power of
Byzantine processes, thus allowing the simplicity of the consensus
presented in Algorithm 2.

Our algorithm requires only n(dlogne+1)+(1+(t +1)dlogne)
bits in the PEATS object3 (n PROPOSE tuples plus one DECI-
SION tuple). The consensus algorithm with the same resilience
presented in [9] requires (n+1)

(2t+1
t

)
sticky bits4.

Theorem 2 Algorithm 2 provides a t-threshold strong binary
consensus object if n≥ 3t +1.

Proof: From the access policy, we know that the only way to
insert a DECISION tuple in the space is by invoking a cas
operation. This operation can be invoked successfully (returning
true) only once, since neither an inserted tuple can be removed
(the operations in and inp are not allowed by the policy), nor two
decision tuples can be inserted (the second field of the template
of cas must be formal). In any execution of the algorithm, the first
process that executes cas after reading t +1 PROPOSE tuples with
the same value v will manage to insert a DECISION tuple with v
(if it satisfies the rule Rcas), thus making this the decision value
(lines 13 and 15). The Agreement property is always satisfied
since the value v associated with the DECISION tuple in the
space will be read by all correct processes that do not succeed in
the cas operation, i.e., all that receive false in reply. Their decision
values will be v (lines 12 and 15).

The algorithm satisfies also Strong Validity since the DECI-
SION tuple can only be inserted if its value v is justified by a
set of t +1 processes (at least one correct) that proposed v. This
condition is enforced by the rule Rcas of the access policy.

In terms of termination conditions, our algorithm is a t-
threshold protocol. This property is satisfied since for a process
to decide a value v, this value must have been proposed by t +1
processes. Assuming n≥ 3t +1 it can be easily shown that if n−t
correct processes (at least 2t + 1) invoke x.propose with some

3E.g., only 68 bits are needed for t = 4 and n = 13.
4It is a lot of memory. For example, if we want to tolerate t = 4 faulty

processes, we need at least n = 13 processes and 1764 sticky bits.

value v′ ∈ {0,1}, there will be always at least t + 1 PROPOSE
tuples for some value (0 or 1) and one process will insert a
justified DECISION tuple in the space. Since the cas operation
is wait-free, the algorithm terminates. �Theorem 2

C. Strong Multi-valued Consensus

A strong multi-valued consensus can be obtained with little
modifications to the strong binary consensus algorithm following
the same ideas of [9]. In fact, if we consider a k-valued consensus
problem, in which there are k possible inputs for processes to
propose5, i.e., |V |= k (binary consensus is a 2-valued consensus),
we can use the same algorithm and collect different proposition
values in different sets Sv, with v∈ V and |V |= k. The algorithm
works exactly in the same way as Algorithm 2: a process proposes
its value and keeps reading the values of other processes until
there is some value that was proposed by t + 1 processes (some
correct process proposed it). This value will be assumed as a
possible decision.

Unfortunately, this algorithm requires more processes to resist
t faulty processes, as shown by the following theorem:

Theorem 3 The algorithm implements a t-threshold strong k-
valued consensus object if n≥ (k +1)t +1.

Proof: The proofs for Agreement and Validity are similar to the
proof of Theorem 2. Now suppose the worst possible execution
for a system running the algorithm described above: each of
the k possible values is proposed by t processes and t faulty
processes do not propose (they crash or stay silent during the
whole execution). To guarantee the termination of the algorithm,
we need one process to break the tie of t proposals for each value.
Consequently, we need n≥ kt + t +1 = (k +1)t +1. �Theorem 3

A direct consequence of this theorem is that the number
of processes needed to solve strong k-valued consensus in the
presence of Byzantine faults using the described algorithm is
always n > k. This result rules out the possibility of using this
algorithm in applications where every process must propose some
process identifier to a consensus. Examples of such applications
are consensus-based mutual exclusion [8] and leader-election
[17].

Our strong multi-valued consensus algorithm requires only
O(n(logn+ log |V |)) bits of shared memory.

The following theorem proves that n ≥ (k + 1)t + 1 is the
minimum number of processes needed to solve the k-valued
strong consensus problem tolerating t Byzantine faults.

Theorem 4 The k-valued strong consensus problem can only
be solved in an asynchronous system in which the processes
communicates through PEOs and at most t processes can be faulty
if the number of processes is n≥ (k +1)t +1.

Proof: Theorem 3 proves the existence of an algorithm with this
resilience. We have to prove now that there is no algorithm that
solves the k-valued strong consensus problem with n ≤ (k + 1)t.
Assume that there is an algorithm A that solves this problem with
this number of processes. We will present an execution in which
A does not terminate.

5This problem is completely different from the well known k-set consensus,
where the consensus value of the processes can be different, but belonging to
a set of k values [29].
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Let V = {v1, ...,vk} be the domain of k values. Suppose an
execution α of A in which no faulty process participates in the
distributed computation (t processes stay silent) and each of the
k values of V is proposed by at most t correct processes.

Independently of the shared memory object(s) used by A and
their access policy(s), to satisfy the strong consensus Validity
property a correct process can only consider a value for decision
if it knows that this value was proposed by at least t +1 processes.
If this condition is not true, it is very easy to show an execution of
A in which a correct process will decide a value proposed only
by faulty processes (due to the system absence of synchrony),
violating the Validity property.

Turning back to the execution α , the system will reach a
configuration in which all correct processes will have read at
most t proposals for each one of the k values and cannot read
more proposals (there are no more processes, since all correct
processes –at most kt– already proposed and the t faulty ones
will stay silent). Consequently, no value will be proposed by at
least t + 1 processes and the algorithm will not terminate. This
means that there cannot be an algorithm A that solves the k-valued
strong consensus problem with n≤ (k +1)t. �Theorem 4

Given this theorem, we can define the optimal resilience for
strong binary consensus.

Corollary 1 The optimal resilience for the strong binary con-
sensus problem in asynchronous systems where the processes
communicate using PEOs is t = b n−1

3 c of n processes.

Proof: The proof that such algorithm exists is given by Theorem
2. The proof that this resilience is optimal is a direct consequence
of the Theorem 4 if we take k = 2. �Corollary 1

D. Default Multi-valued Consensus

A default multi-valued consensus object can be obtained by
making some simple modifications to the strong binary consensus
in Algorithm 2. The objective here is to show that a PEATS allows
to solve multi-valued consensus stronger than weak consensus
with optimal resilience, i.e, with n≥ 3t +1.

The required modifications to Algorithm 2 are the following:
• there has to be one set Sv for every different value v in a

tuple 〈PROPOSE,∗,v〉 obtained from the PEATS in line 7
(instead of only S0 and S1);

• after a process reads n− t proposed values, if there is no
value v proposed by at least t +1 processes, the value to be
put in the DECISION tuple is ⊥;

• if the value put in the DECISION tuple is ⊥, the third field
in the DECISION tuple has to be a set with all the sets Sv
filled in line 8.

In order to rule out the possibility of malicious processes
forcing the consensus value to be always ⊥, we have to ensure
that the default value is put in the PEATS (using cas) by a process
p only if this process has read n− t PROPOSE tuples and none
of the values was proposed by t +1 processes. This condition is
enforced by the access policy in Figure 5.

There are two main differences between this policy and the one
used for strong consensus (see Figure 4). First, all proposed values
must be different from ⊥ (rule Rout ). Second, the rule Rcas now
states that if p wants to output a DECISION tuple in the PEATS
with v =⊥, it has to show that it did not find a value proposed by
t +1 processes. More precisely, the rule states that if the second

Object State T S
Rrdp: execute(rdp(t)) :− invoke(p,rdp(t))
Rout: execute(out(〈PROPOSE, p,x〉)) :−

invoke(p,out(〈PROPOSE, p,x〉))∧
x 6=⊥∧
@y : 〈PROPOSE, p,y〉 ∈ T S

Rcas: execute(cas(〈DECISION,x,∗〉,〈DECISION,v,P〉)) :−
invoke(p,cas(〈DECISION,x,∗〉,〈DECISION,v,P〉))∧
formal(x)∧
((v 6=⊥∧|P| ≥ t +1∧
(∀q ∈ P,〈PROPOSE,q,v〉 ∈ T S))∨
(v =⊥∧|

⋃
Sv∈P Sv| ≥ n− t ∧ (∀Sv ∈ P, |Sv| ≤ t)∧

(∀Sv ∈ P,∀q ∈ Sv,〈PROPOSE,q,v〉 ∈ T S)))

Fig. 5. Access policy for the PEATS used in the default multi-valued
consensus.

argument of the cas operation executed by p (Algorithm 2, line
12) takes v =⊥, then the third argument has to contain a set of
sets Sv satisfying the following conditions: (i.) the union of all
sets Sv must contain at least n− t processes; (ii.) no set Sv can
have more than t processes; (iii.) all processes q in all sets Sv
must correspond to a PROPOSE tuple 〈PROPOSE,q,v〉 in T S.

Theorem 5 The algorithm implements a t-threshold default
multi-valued consensus object if n≥ 3t +1.

Proof: The Agreement property is satisfied due to the access
policy of Figure 5 that does not allow two different DECISION
tuples to be inserted in the space. The two conditions of the
Default Strong Validity property are also satisfied:

1) If all correct processes invoke x.propose(v) with the same
value v then a different value v′ can be proposed by at
most other t processes and clearly the cas operation of the
PEATS will not allow the insertion of a DECISION tuple
with v′. A malicious process will also not be allowed to
insert a DECISION tuple with ⊥ due to the last two lines
of the rule Rcas.

2) If a value v 6=⊥ is decided, it must have been proposed by
at least t +1 processes (one of which correct). �Theorem 5

VI. UNIVERSAL CONSTRUCTIONS

A fundamental problem in shared memory distributed comput-
ing is to find out if an object X can be used to implement (or
emulate) another object Y . This section proves that PEATS are
universal objects [18], i.e., that they can be used to emulate any
other shared memory object. Herlihy has shown that an object
is universal in a system with n processes if and only if it has
consensus number n, i.e., if it can solve consensus for n processes
[18].

The proof that PEATS are universal is made by providing two
universal constructions based on this kind of object. A universal
construction is an algorithm that uses one or more universal
objects to emulate any other shared memory object [18]. There
are several wait-free universal constructions for the crash fault
model, using consensus objects [18], sticky bits [13], compare
and swap registers [17] and several other universal objects. A
universal construction for the Byzantine fault model using sticky
bits was defined in [11]. However, this construction is not wait-
free but only t-resilient.
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In order to define a universal construction that emulates
a deterministic object o, we have to start by defining the
type of the object. A type T is defined by the tuple
〈STAT ET ,ST , INVOKET ,REPLYT ,applyT 〉 where STAT ET is the
set of possible states of objects of type T , ST ∈ STAT ET is the
initial state for objects of this type, INVOKET is the set of
possible invocations of operations provided by objects of type
T , REPLYT is the set of possible replies for these invocations,
and applyT is a function defined as:

applyT : STAT ET × INVOKET → STAT ET ×REPLYT

The function applyT represents the state transitions of the
object. Given a state Si and an invocation inv, applyT (Si, inv)
gives a new state S j (the result of the execution of inv in state Si)
and a reply reply for the invocation. This definition is enough
for showing the universality of tuple spaces, although Malkhi
et al. have shown that a simple generalization is needed for
emulating non-deterministic types and some objects that satisfy
weak liveness guarantees [11].

In this section we present a simple non-blocking universal
construction, which shows the power and simplicity of our PEATS
objects. Then, we present a wait-free universal construction.

A. Uniform Lock-free Universal Construction

Our lock-free universal construction follows previous construc-
tions [17], [18]. The idea is to make all correct processes execute
the sequence of operations invoked in the emulated object in
the same order. Each process keeps a replica of the state of the
emulated object Si. An invocation inv is executed by applying
the function applyT (Si, inv) to that state. The problem essentially
boils down to the definition of a total order for the execution of
the operations.

The operations to be executed in the emulated object can be
invoked in any of the processes, so the definition of an order
for the operations requires a consensus among all processes.
Therefore, we need an object with consensus number n, i.e., a
universal object.

The solution is to add – to thread – the operations to be
executed in the emulated object to a list where each element has a
sequence number. The element with the greater sequence number
represents the last operation to be executed on the emulated
object. The consistency of the list, i.e., the property that each of
its elements (each operation) is followed by one other element,
is guaranteed by the universal object, a PEATS in our case.
Given this list, each process executes the operations of the object
emulated in the same order.

The list of operations is implemented using a PEATS object.
The key idea is to represent each operation as a SEQ tuple
containing a position field, and to insert each of these tuples in the
space using the cas operation. When a process wants to execute
an operation, it invokes the cas operation: if there is no SEQ tuple
with the specified sequence number in the space, then the tuple
is inserted. Figure 6 illustrates the main idea.

In this figure the process p1 tries to thread a tuple containing
an invocation inv1 with sequence number 3 in the PEATS, while
process p2 executes cas trying to insert an invocation inv2 with
sequence number 5. In the PEATS there are tuples with sequence
numbers from 1 to 4, so process p1 will not insert its tuple and
process p2 will have success in its insertion. Algorithm 3 presents
this universal object.

p
21

p

cas(<SEQ,3,?inv>,<SEQ,3,inv1>) cas(<SEQ,5,?inv>,<SEQ,5,inv2>)

<SEQ,4,i4>

PEATS
<SEQ,1,i1>

<SEQ,3,i3>

<SEQ,2,i2>

Fig. 6. PEATS-based universal construction.

Algorithm 3 Lock-free universal construction (process pi).
Shared variables:

1: ts = ∅ {PEATS object}
Local variables:

2: state = ST {current state of the object}
3: pos = 0 {position of the tail of the operations’ list}

invoked inv
4: loop
5: pos← pos+1
6: if ts.cas(〈SEQ,pos,?einv〉,〈SEQ,pos, inv〉) then
7: 〈state,reply〉 ← applyT (state, inv)
8: return reply
9: end if

10: 〈state,reply〉 ← applyT (state,einv)
11: end loop

The algorithm assumes that each process pi begins its execution
with an initial state composed by the initial state of the emulated
object (state = ST , line 2) plus an empty list (pos = 0, line 3).
When an operation is invoked (denoted by inv), pi iterates through
the list updating the state variable (loop in lines 4-11) and trying
to thread its operation by appending it to the end of the list using
the cas operation (line 6). If cas is executed successfully by pi,
the state variable is updated and the reply to the invocation is
returned (lines 7 and 8).

The algorithm is lock-free due to the cas operation: when two
processes try concurrently to put tuples at the end of the list,
at least one of them succeeds. However, the algorithm is not
wait-free since some processes might succeed in threading their
operations again and again, delaying other processes forever. A
very interesting property of this algorithm is that it is uniform:
processes executing operations on the emulated object do not need
to know each other. This means that this algorithm works even
with a unknown and dynamic set of processes.

Object State T S
Rcas: execute(cas(〈SEQ,pos,x〉,〈SEQ,pos, inv〉)) :−

invoke(p,cas(〈SEQ,pos,x〉,〈SEQ,pos, inv〉))∧
formal(x)∧
(pos = 1∨∃y : 〈SEQ,pos−1,y〉) ∈ T S)

Fig. 7. Access policy for the PEATS used in Algorithm 3.

The access policy for our universal construction (Figure 7)
states that a SEQ tuple with the second field pos can only be
inserted in the space (using cas) if there is a SEQ tuple with the
second field with value pos−1. No other operations are allowed.

The proof of the correctness of the algorithm is based on the
following lemmas:
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Lemma 1 For any execution of the system, the following prop-
erties are invariants of the PEATS used in Algorithm 3:

1) For any pos≥ 1, there is at most one tuple 〈SEQ,pos, inv〉
in the tuple space;

2) For any tuple 〈SEQ,pos, inv〉 in the tuple space with pos >
1, there is exactly one tuple 〈SEQ,pos−1, inv〉 in the space.

Proof: These two invariants follow directly from Algorithm 3 and
its access policy (Figure 7):

1) From the access policy we can see that a tuple can be
inserted in the space only by a cas operation, which is
executed with a template and an entry with the same
sequence number pos, and with a template invocation field
(x) that is formal. With that property and the behavior of
the cas operation, it becomes clear that there can never be
two SEQ tuples with the same sequence number in the tuple
space.

2) From the access policy it is possible to see that a cas
operation can be executed by trying to insert a tuple in
position pos only if there is a SEQ tuple in the space with
position pos− 1. This guarantees that there is one tuple
〈SEQ,pos−1, inv〉 in the space. That there is no more than
one is a direct consequence of the first part of the lemma.
�Lemma 1

Lemma 2 The universal construction of the Algorithm 3 is lock-
free.

Proof: This lemma is proved by contradiction. Let α be an
execution with only two correct processes p1 and p2 (without loss
of generality) that invoke operations inv1 and inv2, respectively.
Suppose that they stay halted forever, not receiving replies. We
have to show that α does not exist. An inspection of the algorithm
shows that the processes keep updating their copies of the object
state until they execute the most recent threaded operation (with
position field value equal to pos, without loss of generality). At
this point, p1 and p2 will try to thread their invocations to the
list in position pos+1 executing cas (line 6). Since the PEATS is
assumed to be linearizable, the two cas invocations will happen
one after another in some order, so either the inv1 or the inv2
SEQ tuples will be inserted in position pos+1. The process that
succeeds in executing cas will thread its invocation and will return
its reply (lines 7 and 8). This is a contradiction with the definition
of α . �Lemma 2

Theorem 6 Algorithm 3 provides a lock-free universal construc-
tion.

Proof: Lemma 1 implies that there is a total order on the
operations executed in the emulated object. Through an inspection
of the algorithm, it is easy to see that a process updates its copy
of the state of the emulated object by applying the deterministic
function applyT to all SEQ tuples in the order defined by the
sequence number. In this way, all operations are executed in the
same order by all correct processes, and this order is according to
the sequential specification of the object provided by the function
applyT . This suffices for proving that the universal construction
satisfies linearizability. Lemma 2 proves that the construction is
lock-free. �Theorem 6

B. Wait-free Universal Construction

The wait-free universal construction follows the same basic
idea as the previous construction of building a list of operations
to be executed in the emulated object. However, here we need a
helping mechanism that allows a process to thread an operation
even if in contention with n−1 faulty processes. This mechanism
works as follows. When a process wants to thread an operation,
it inserts an ANN (announcement) tuple with the invocation it
wants to execute on the emulated object. After this insertion,
the invocation is said to be announced. For each position of the
invocations list there is a preferred process for the position. The
preferred process for position pos is pi such that i = pos mod n.
If the preferred process for a position has an invocation that is
announced but not threaded, then the policy of the space does
not permit any other invocation to be threaded in that position.
The invocation can be threaded either by the process or by any
other process willing to “help” it. A consequence of the use of
this mechanism is that the algorithm is not uniform: processes
must be aware of the id of each other in order to help.

Algorithm 4 presents this universal construction. For simplicity
it assumes there are no two identical invocations, something that
can be trivially enforced by adding a unique timestamp to the
invocation (including the invoker’s identification).

Algorithm 4 Wait-free universal construction (process pi).
Shared variables:

1: ts = ∅ {PEATS object}
Local variables:

2: state = ST {current state of the object}
3: pos = 0 {position of the tail of the operations’ list}

invoked inv
4: ts.out(〈ANN, i, inv〉)
5: repeat
6: pos← pos+1
7: preferred← pos mod n
8: if ¬ts.rdp(〈SEQ,pos,?einv〉) then
9: if (i 6= preferred)∧ ts.rdp(〈ANN,preferred,?tinv〉) then

10: if ts.rdp(〈SEQ,∗, tinv〉) then
11: tinv← inv
12: end if
13: else
14: tinv← inv
15: end if
16: if ts.cas(〈SEQ,pos,?einv〉,〈SEQ,pos, tinv〉) then
17: einv← tinv
18: end if
19: end if
20: 〈state,reply〉 ← applyT (state,einv)
21: until einv = inv
22: ts.inp(〈ANN, i, inv〉)
23: return reply

Each process pi begins its execution with the initial state of the
emulated object (state = ST , line 2) and an empty list (pos = 0,
line 3). When an operation (denoted by inv) is invoked on the
emulated object, pi first announces its invocation with an ANN
tuple and then iterates through the list updating its state variable
and trying to thread inv (lines 5-21). When inv is executed (einv =
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inv), pi removes the announcement tuple from the PEATS and
returns the reply for the invocation (lines 20-23).

The most important part of the algorithm is the loop in lines 5-
21. This loop has two main parts: the verification if the preferred
process needs help (lines 8-15) and the threading of an invocation
(lines 16-18). The main idea is to find an invocation to be threaded
(stored in variable tinv) and try to insert it in the PEATS in a SEQ
tuple. The invocation to be executed is stored in variable einv.
The two parts of the loop are executed for some position pos
only if this position is not already occupied (line 8). Otherwise,
the invocation for this position is read and executed, updating the
state of the emulated object (line 20).

The “help” part of the loop works as follows. If there is an
ANN tuple from the preferred process for position pos (line 9,
second condition) that is not already threaded (line 10), then the
invocation tinv in the ANN tuple must be threaded in that position
(line 11). Otherwise, inv can be threaded (line 14). Notice that pi
verifies if some process needs help only if it is not the preferred
process for position pos (first condition of line 9). The operation
is threaded using a cas: if there is no SEQ tuple in the position,
then einv is inserted in a SEQ tuple.

The access policy for this universal construction is responsible
for ensuring that the total order of the list is always satisfied and
the helping mechanism is respected. This policy is presented in
Figure 8.

Object State T S
Rout: execute(out(〈ANN, i, inv〉)) :−

invoke(pi,out(〈ANN, i, inv〉))∧
@x : 〈ANN, i,x〉 ∈ T S

Rrdp: execute(rdp(t)) :− invoke(p,rdp(t))
Rinp: execute(inp(〈ANN, i, inv〉)) :−

invoke(pi, inp(〈ANN, i, inv〉))
Rcas: execute(cas(〈SEQ,pos,x〉,〈SEQ,pos, inv〉)) :−

invoke(p,cas(〈SEQ,pos,x〉,〈SEQ,pos, inv〉))∧
formal(x)∧
(pos = 1∨∃y : 〈SEQ,pos−1,y〉 ∈ T S)∧
((@y : 〈ANN,pos mod n,y〉 ∈ T S)∨
(∃y : (〈ANN,pos mod n,y〉 ∈ T S∧
∃z : 〈SEQ,z,y〉 ∈ T S))∨
(〈ANN,pos mod n, inv〉 ∈ T S))

Fig. 8. Access policy for the PEATS used in Algorithm 4.

The policy is an extension of the policy of the lock-free
universal construction (see Figure 7). There are now two simple
rules to allow the insertion and removal of ANN tuples (Rout,
Rinp). There are also three new lines related to ANN tuples
in the rule Rcas (the bottom three lines). These lines enforce
the behavior of the helping mechanism by defining exactly in
which conditions a cas invocation can be executed (respecting
the helping mechanism). One invocation can be threaded if one of
the following conditions are satisfied: (i.) the preferred process for
the position has not announced an invocation; (ii.) the preferred
process for the position announced an invocation but it had
already been threaded; or (iii.) the invocation being threaded is
the one that was announced by the preferred process.

The proof of the correctness of the algorithm is based on the
following three lemmas:

Lemma 3 For any execution of the system, the following prop-
erties are invariants of the PEATS used in Algorithm 4:

1) For any pos≥ 1, there is at most one tuple 〈SEQ,pos, inv〉
in the tuple space;

2) For any tuple 〈SEQ,pos, inv〉 in the tuple space with pos >
1, there is exactly one tuple 〈SEQ,pos−1, inv〉 in the space.

Proof: The proof of this lemma is identical to the proof of the
equivalent lemma for the lock-free construction (Lemma 1). The
invariants are enforced by the policies, which are similar for both
constructions. The specific part of the rule Rcas that enforces
the invariants (invoke(p,cas(〈SEQ,pos,x〉,〈SEQ,pos, inv〉)) ∧
formal(x)∧ (pos = 1∨∃y : 〈SEQ,pos− 1,y〉 ∈ T S)) is identical
in the policies of both algorithms (Figures 7 and 8). �Lemma 3

Lemma 4 An invocation inv made by a correct process pi is
threaded in position pos in a universal construction with pos−
1 threaded operations if either (1.) there is no announced but
not threaded invocation inv′ made by process p j 6= pi, with j =
pos mod n; or (2.) i = pos mod n. If an invocation does not
satisfy any of these two conditions, then it cannot be threaded.

Proof: Let us prove the first part of the lemma. Consider a process
pi trying to thread inv. An invocation inv threaded in position pos
is represented by the tuple 〈SEQ,pos, inv〉. The policy defined in
Figure 8 allows those tuples to be inserted in the PEATS in a
single way: using the cas operation. If there are exactly pos−1
threaded tuples, then there is no tuple in position pos, so process
pi will enter the “if” clause of lines 8-19. We have to prove that
if one of the conditions of the lemma is satisfied, then the rule
Rcas allows the insertion of the SEQ tuple, i.e., allows inv to be
threaded:
• Condition (1.): This condition assumes i 6= preferred =

pos mod n. If there is no invocation announced by process
p j with j = pos mod n (case 1), then the “if” condition of
line 9 will not be satisfied, pi will execute line 14 and the
invocation to be threaded (variable tinv) will be set to inv.
If there is such an announcement, but the invocation was
already threaded (case 2), then both “if” conditions of lines
9 and 10 will be satisfied and the invocation to be threaded
(tinv) will also be set to inv. Therefore, in both cases, process
pi in the cas of line 16 tries to insert the invocation inv
in the position pos. This operation will succeed only if the
conditions of rule Rcas are satisfied, but this happens in both
cases:

– case 1: (@y : 〈ANN,pos mod n,y〉 ∈ T S) will be satisfied;
– case 2: (∃y : (〈ANN,pos mod n,y〉 ∈ T S ∧ ∃z :
〈SEQ,z,y〉 ∈ T S)) will be satisfied.

• Condition (2.): if pi is the preferred process to thread an
operation in pos (i = preferred = pos mod n), then it will
execute lines 9 and 14, then execute the cas trying to
insert a tuple 〈SEQ,pos, inv〉. It will succeed because, if pi
is correct it has announced its invocation using an ANN
tuple, and consequently the conditions of rule Rcas will be
satisfied. In particular, the last condition will be satisfied
since (〈ANN,pos mod n, inv〉 ∈ T S).

Let us now prove the second part of the lemma. If some process
tries to insert a tuple without satisfying any of the conditions
of the lemma it will not succeed simply because the only way
to insert a SEQ tuple is through the operation cas and the Rcas
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rule will only allow an insertion that satisfies these conditions.
�Lemma 4

Lemma 5 The universal construction of the Algorithm 4 is wait-
free.

Proof: This lemma is proved by contradiction. Let α be an
execution with n processes in which a correct process pi invokes
an operation inv but never receives the reply. We have to show
that α does not exist.

When pi starts executing Algorithm 4, it inserts an ANN tuple
for its invocation inv in the PEATS (line 4). Suppose that after
the insertion of this announcement, the last SEQ tuple inserted
in the space has sequence number pos. We have to consider two
cases:
• If there is a configuration in α in which there is no pro-

cess p j 6= pi with an invocation that is announced but not
threaded, then pi will execute the cas successfully due to
Lemma 4 (condition (1.)).

• If all processes (correct or faulty) keep executing operations
on the emulated object after the announcement of inv, then
eventually there will be a position pos′ such that all positions
until pos′−1 will have operations threaded and pos′ mod n =
i. Lemma 4 (condition (2.)) guarantees that inv is threaded.

In both cases inv is threaded, then pi executes lines 17, 20 and
23 and returns reply. This fact contradicts the definition of α .
�Lemma 5

The next theorem proves that Algorithm 4 is a wait-free
universal construction.

Theorem 7 Algorithm 4 provides a wait-free universal construc-
tion.

Proof: Lemma 3 implies that there is a total order on the
operations executed in the emulated object. An inspection of the
algorithm shows that a process updates its copy of the state of
the emulated object by applying the deterministic function applyT
to all SEQ tuples in the order defined by the sequence number.
This way, all operations are executed in the same order by all
correct processes, and this order is according to the sequential
specification of the object provided by the function apply, which
satisfies linearizability. Lemma 5 proves that the construction is
wait-free. �Theorem 7

VII. RELATED WORK

In this paper we present several shared memory algorithms that
tolerate Byzantine faults using an augmented tuple space. To the
best of our knowledge, the only other works which use this type
of object to resolve fundamental distributed computing problems
are [14], [15]. However, in contrast to this paper, these works
address only the wait-free consensus problem in fail-stop systems
(no Byzantine failures).

Asynchronous shared memory systems with processes that can
fail in a Byzantine way have been first studied independently by
Attie [10] and Malkhi et al. [11]. The work in [10] shows that
weak consensus cannot be solved using only resettable objects6.
This result implies that algorithms for solving consensus in this
model must use some kind of persistent (non-resettable) object

6An object o is resettable if, given any of its reachable states, there is a
sequence of operations that can return the object back to its initial state [10].

like sticky bits. The PEATS used in our algorithms can be viewed
as a persistent object since the access policies do not allow
processes to reset the state of the object.

The work presented in [11] uses shared memory objects with
ACLs to define a t-threshold strong binary consensus algorithm
and a t-resilient universal construction. The former uses 2t + 1
sticky bits and requires n ≥ (t + 1)(2t + 1) processes. The paper
also shows that there can be no strong binary consensus algorithm
with n≤ 3t processes in this model of computation.

In a more recent work, Alon et al. [9] extend previous results
by presenting a strong binary consensus algorithm that attains
optimal resiliency (n ≥ 3t + 1) using an exponential number of
sticky bits and requiring also an exponential number of rounds.
That work proves several lower bounds related to the number of
required objects to implement consensus, including a tight trade-
off characterizing the number of objects required to implement
strong consensus: a polynomial number of processes needs an
exponential number of objects and vice-versa. This result em-
phasizes the power of ACLs in limiting malicious processes but
also shows the limitations of this model, specially in terms of
the large number of objects required to attain optimal resilience.
The approach proposed in the present paper uses a more powerful
protection model than ACLs so this trade-off does not apply since
our objects cannot be subverted by faulty processes.

As stated in the paper, our algorithms are much more simple
and efficient than those in [11], [9]. It could be argued that this
happens because we assume a more powerful model and shared
memory object (PEATS and policy enforcement instead of sticky
bits and ACLs) which would be much more costly to implement.
Obviously it is more difficult to implement a PEATS than sticky
bits and ACLs in hardware or at operating system level, but as
argued in this paper and in previous papers in the area [11], [9],
Byzantine shared memory only makes sense when considering
shared memory emulation on message-passing systems7 like,
for instance, [1], [2], [3], [4], [6], [8]. In that case, shared
memory is implemented by a set of servers, so implementing
the sticky bit set operation or the PEATS cas operation (both
with consensus number n) requires exactly the same: a Byzantine
fault-tolerant atomic multicast protocol that delivers the requests
to all servers in the same order. Therefore, in terms of the
costs relevant in Byzantine protocols for this emulation – time
complexity, communication complexity, cryptography used – they
are identical in both cases since the protocols required are also the
same. Implementing simple ACLs or policy enforcement requires
the same additional resource: a reference monitor deployed in
each replica to verify access policies. The big difference here is
that an ACL monitor only verifies if a process trying to execute
an operation on an object has its id on the operation ACL while
a policy enforcement monitor has to evaluate a predicate. As can
be seen in the algorithms presented in this paper, the predicates
are in general very simple and can be implemented efficiently
with little (local) processing overhead. If one takes into account
the improvements of our protocols when compared with previous
ones, this little extra processing is worth it.

To show the feasibility of our approach we have implemented
the DEPSPACE system [26], a complete Byzantine fault-tolerant

7The study of Byzantine faults in real shared memory systems is considered
uninteresting because as these systems are implemented on tightly coupled
architectures, the presence of a malicious process usually indicates that the
whole system is compromised.
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PEATS developed in Java. Experimental results have shown that
its performance is competitive with non-dependable tuple space
implementations.

The type of policy enforcement used in this paper was inspired
by the law-governed interaction approach [24] and its use in
protecting centralized tuple spaces [30].

VIII. CONCLUDING REMARKS

The proposal for distributed computing with shared memory
accessed by Byzantine processes presented in this paper differs
from the previous model where objects are protected by access
control lists. Our approach is based on the use of fine-grained
access policies that specify rules that allow or deny an operation
invocation to be executed in an object based on the arguments
of the operation, its invoker, and the state of the object. The
constructions presented in this paper (consensus and universal
objects) demonstrate that this approach allows the development
of simple and elegant algorithms, at the cost of defining access
policies for the shared memory objects they use.

We show that a particular type of PEO – the PEATS – is
an attractive choice as support for coordinating processes that
can be subject to Byzantine failures due to its programming
simplicity (few versatile operations), flexibility (can implement
almost any data structure) and power (in terms of the wait-free
hierarchy [18]). The combination of these advantages with fine-
grained security policies allows the implementation of simple
algorithms for the Byzantine fault model, especially if compared
with previous solutions for this model [9], [11]. A consequence
of this result is that fine-grained policy enforcement is a more
adequate protection mechanism for dependable services/shared
memory objects when compared with ACLs, which are considered
the standard protection mechanism for these kind of systems.

Regarding the implementation of PEATS (or any other PEO),
the amount of resources required to implement these objects is
the same of objects protected by ACLs previously used to solve
problems in our model: a local reference monitor deployed in
every replica of the object implementation [26]. We remark that
both the PEO model and the algorithms based on the PEATS are
well suited for coordination of non-trusted processes in practical
systems. We envision system models where the PEATS (or
another PEO) is deployed on a fixed and small set of servers and
is used by an unknown, dynamic and unreliable set of processes
that need to coordinate themselves. Programming synchronization
primitives on these system models should be much simpler
than using Byzantine fault-tolerant synchronization protocols for
message-passing systems.
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et d’Analyse des Systémes, France, in 1985. Also,
he was a visiting researcher at UCI (University of
California, Irvine) in 1992-1993. Since 1977 he has

been employed as a Research Associate and later as a Professor in the
Department of Automation and Systems at UFSC, in Brazil. His research
interests are centered on Distributed Systems, Fault Tolerance and Security.
He has over a hundread scientific publications and is a Member of the IEEE
and of Brazilian scientific societies.

Lau Cheuk Lung is an associate professor of
the Department of Informatics and Statistics (INE)
at Federal University of Santa Catarina (UFSC).
Currently, he is conducting research in fault toler-
ance, security in distributed systems and middle-
ware. From 2003 to 2007, he was an associate
professor in the Department of Computer Science
at Pontifical Catholic University of Paraná (Brazil).
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