
Leveraging an Homomorphic Encryption Library to
Implement a Coordination Service

Eugenio A. Silva Miguel Correia
INESC-ID, Instituto Superior Técnico, Universidade de Lisboa

Abstract— The paper presents MorphicLib, a new partial
homomorphic cryptography library written in Java that can be
used to implement a wide-range of applications. The paper shows
the use of the library with the HomomorphicSpace coordination
service. This service is a tuple space that stores encrypted tuples
but still supports operations like returning tuples with values
within a certain range.

I. INTRODUCTION

Researchers and practitioners for decades assume that en-
crypted data cannot be processed. Generally, it is necessary to
decrypt the data before performing any operations over that
data. This problem becomes specially important when large
data resides in a public cloud. In this case, there is a dilemma
between two alternatives: (1) either the data is decrypted in the
server-side (in the cloud), which poses security issues, namely
the need to pass the key to the server and have the information
exposed to insider threats in the cloud [1], [2] at least during
the operation; or (2) the data is decrypted in the client-side,
which involves downloading the data from the cloud (typically
expensive and slow) and prevents using the computation power
of the cloud. A good solution to this dilemma would be to
perform the desired operations directly on the encrypted data,
at the server-side, where it is stored. This would avoid the
cost of moving the data, would allow leveraging the cloud’s
computation power, and would solve the security issues.

The term homomorphic encryption designates forms of
encryption that allow some operations to be performed over
encrypted data, without decrypting it. With those forms of
encryption, it is possible to perform resource-intensive com-
puting tasks at server-side without having to decrypt it first.
Homomorphic encryption became popular with Gentry’s work
[3], which was coincident with the emergence of cloud com-
puting. Gentry’s scheme provides fully homomorphic encryp-
tion (FHE), so it allows performing arbitrary computation on
encrypted data. Other FHE schemes were presented in the
following years [4], [5].

Although in theory FHE solves the problem of computing
encrypted data outsourced to a cloud, the performance of these
schemes is too poor for practical applications [6]. For that
reason, much effort has been placed in developing and using
partial homomorphic encryption (PHE) schemes [7], [8], [9],
[10], [11]. PHE schemes allow performing some computation
over encryption data, but not arbitrary computation like FHE.
CryptDB is an important step towards the deployment of
PHE in real systems [11]. CryptDB is a relational database

management system that stores encrypted data and allows
doing SQL queries. The system combines a set of PHE
schemes and has enough performance for many applications.

This paper presents MorphicLib, a new partial homomorphic
cryptography library that can be used to implement a wide-
range of applications. The library contains functions (nor-
mally) executed at the client-side and functions for the server-
side. For the client-side there is the encryption scheme, i.e.,
functions for encryption, decryption, and key generation. For
the server-side there are homomorphic equivalent operations
(addition, multiplication, comparison, etc.). The library was
programmed in Java in order to ensure portability, i.e., that it
can be executed in different platforms, both client and server-
side. Moreover, Java is arguably the most popular general
purpose programming language today, with a large set of APIs,
and a strong programming community.

The paper shows the usefulness of the library with a service
that is interesting in its own right, the HomomorphicSpace co-
ordination service. Coordination services like Google Chubby
[12], Google Megastore [13], Apache Zookeeper [14], and
GigaSpace’s tuple space (now part of XAP) [15] are important
components in current cloud systems. They are used for tasks
such as synchronization, locking, orchestration, metadata stor-
age, leader election, and replica failure detection. DepSpace
[16], [17] is a tuple space, i.e., a coordination service that
follows Linda’s associative memory paradigm [18], similarly
to GigaSpace’s tuple space. DepSpace is replicated, so it can
tolerate arbitrary (Byzantine) faults in some of its replicas.

HomomorphicSpace is an extension of DepSpace with ho-
momorphic encryption (MorphicLib), so that data (tuples) can
be stored encrypted at the servers. DepSpace’s commands
to read and retrieve tuples were extended with operators
for inequality, less/greater relations, and keyword search, all
over encrypted data. Moreover, HomomorphicSpace supports
addition and multiplication of tuples in the server. Data is
never decrypted at the server, only at the client after retrieval.
HomomorphicSpace is Byzantine fault-tolerant like DepSpace.

II. MORPHICLIB LIBRARY

As already mentioned, MorphicLib is a novel library of
partial homomorphic cryptographic functions written in Java
and providing a Java API. MorphicLib was not developed from
scratch, but based on existing source code whenever possible.
The objective was both to simplify the task and to avoid
introducing bugs, which tend to appear due to the complexity
of cryptographic code. This library can be used both at the978-1-5090-3216-7/16/$31.00 ©2016 IEEE

TABLE I
MORPHICLIB’S MAIN CLASSES

Property Homomorphic Op-
erations

Class Input Data
Types

Random None (strong
cryptanalisys
resistance)

HomoRand Strings,
Byte Arrays

Deterministic Equality an inequal-
ity comparisons

HomoDet Strings,
Byte Arrays

Searchable Keyword search in
text

HomoSearch Strings

Order
preserving

Less, greater, equal-
ity comparisons

HomoOpeInt 32 bit Inte-
gers

Sum Add encrypted val-
ues

HomoAdd BigInteger,
String

Multiplication Multiply encrypted
values

HomoMult BigInteger,
String

client-side to encrypt and decrypt data, and at the server-side
to do operations over encrypted data.

The code of the library is organized in classes, one per
homomorphic property. One crucial different between PHE
and FHE is that in the former data has to be encrypted taking
into account the kind of operation that will be supported
over the encrypted data. With FHE, on the contrary, arbitrary
computation is possible over encrypted data (at a cost, in terms
of performance). As we opted for PHE, for each homomorphic
operation we have four kinds of functions (or methods):

• key generation function, typically used at client-side;
• encryption function, typically used at client-side;
• decryption function, typically used at client-side;
• homomorphic operation functions, which do operations

over encrypted data, typically used at the server-side.
Information about the properties of the PHE algorithm, the

operations supported, and the classes is in Table I.

III. HOMOMORPHICSPACE COORDINATION SERVICE

This section presents HomomorphicSpace, a coordination
service that leverages MorphicLib to handle encrypted data at
the server. HomomorphicSpace is an extension of DepSpace,
so we start by presenting the latter.

A. DepSpace

DepSpace (Dependable Tuple Space) is a fault- and
intrusion-tolerant tuple space [16]. Architecturally it is client-
server system implemented in Java. The server-side is repli-
cated in order to tolerate arbitrary faults. The client-side is a
library that can be called by applications that use the service.
Clients communicate with the servers using a Byzantine fault-
tolerant total order broadcast protocol called BFT-Smart. The
most recent version supports extensions to the service [17].

The service provides the abstraction of tuple spaces. A tuple
space can be understood as a shared memory that stores tuples,
i.e., sequences of fields (data items) such as (1, 2, a, hi). Tuples
are accessed using templates. Templates are special tuples
in which some fields have values and others have undefined
values, e.g., wildcards meaning any value (“*”). A template
matches any tuple of the space that has the same number of
fields, in which the values in the same position are identical,

and the undefined values match in some sense. For example,
the template (1, *, a, *), matches the tuples (1, 2, a, hi) and (1,
7, a, 14), but neither (1, 2, b, 4) nor (1, 2, a, hi, 5). DepSpace
supports a set of commands, issued by clients and executed
by the servers. Here we consider the following commands:

• out tuple – inserts a tuple in the space;
• inp template – reads and removes from the space a tuple

that matches the template;
• rdp template – reads but does not remove from the space

a tuple that matches the template;
• inAll template – reads and removes from the space all

tuples that match the template;
• rdAll template – reads but does not remove from the

space all tuples that match the template.
DepSpace does not support homomorphic operations. How-

ever, it allows fields to be encrypted and basic equality
matching by storing a hash jointly with the encrypted field.
This solution however is vulnerable to trivial brute force and
dictionary attacks. It does support the definition of access
control policies using its policy-enforcement mechanism.

B. Threat Model

The threat model we consider for HomomorphicSpace is
similar to the threat model for DepSpace except for one crucial
difference: we consider that any server may be adversarial and
try to read the content of the tuples it stores. We consider
that all tuples of their fields for which confidentiality has to
be preserved are encrypted using homomorphic encryption,
preventing malicious servers from doing such an attack. Sim-
ilarly to DepSpace, adversaries may compromise up to f out
of 3f + 1 servers and stop them or modify their behavior
arbitrarily. This is tolerated using replication and the BFT-
Smart protocol. Network messages may also be tampered
with by the adversary, but the system uses this using secure
channels.

C. Commands

HomomorphicSpace extends DepSpace to allow commands
over tuples with encrypted data items. More precisely in
comparison with DepSpace, HomomorphicSpace: (1) supports
the original match operations over encrypted data; (2) ex-
tend matching beyond the equality and wildcards with more
complex matches, i.e., inequality, order comparisons (lower,
greater), and keyword presence in a text, all over encrypted
data; (3) allow addition and multiplication of encrypted fields.

Besides values and wildcards (“*”), HomomorphicSpace’s
templates can include the following fields:

• % word1. . . wordn – matches a textual field containing all the
words indicated;

• > val – matches a numeric field containing a value greater than
val;

• >= val – matches a numeric field containing a value greater
or equal to val;

• < val – matches a numeric field containing a value lower than
val;

• <= val – matches a numeric field containing a value lower or
equal to val.

Fig. 1. HomomorphicSpace architecture

HomomorphicSpace adds three commands to those provided
by DepSpace (Section III-A). The first is crypt id template
and aims to define a tuple encryption type. The command takes
as input an identifier (id) for the type it will create, and a
template with the homomorphic operation desired for each of
the fields, which will determine the homomorphic property.
For example, if the template contains for a given field the
operation “=”, the system infers that the encryption to be used
for that field is deterministic, which is the strongest that allows
that operation. If no operation is indicated, the field will not
be encrypted. The complete list of interpreted operations is:

• =, <> – determinist encryption
• >,>=, <,<= – order preserving encryption
• % – searchable encryption
• + – Paillier
• & – RSA
• . – random encryption
• other value – no encryption

The second command is rdSum template. This command
starts by collecting all the tuples that match the template
similarly to rdAll, then sums the (encrypted) fields with +
in the template. The function returns a single tuple with the
result. The third command is rdProd template, which works
similarly to rdSum but does multiplication instead of sum.

This scheme allows a single type of encryption per field
(unlike CryptDB). However, with the tuple data structure this
is not a restriction. For instance, for tuples with a single
numeric field, two operations like equality and sum can be
supported by transforming that field in two and using the tuple
encryption type (=, +).

D. Architecture and Functioning

Architecturally the HomomorphicSpace is similar to
DepSpace, with a client-side and a server-side. Figure 1
represents the system with 4 replicas, i.e., with f = 1. From
the confidentiality point of view, the server-side is untrusted
and the client-side trusted.

The server-side of the system is mostly DepSpace code
with the server-side of the MorphicLib and with extensions to
process the homomorphic operations. The client-side includes
MorphicLib’s and DepSpace’s client-side libraries. The main
functions of the client is to encrypt tuples and send them to
the tuple space, and to decrypt them before they are delivered

to the application. When a tuple is encrypted, the encryption
keys are stored in a key repository (a folder with one file per
key). Next we describe both sides in more detail.

Client side – When the crypt command is issued (i.e.,
that method is called), the library generates keys for every
field of the tuple for which homomorphic properties are
desired. These keys are stored jointly with the tuple encryption
type (id and template) in the key repository. All the other
commands (out, inp, etc.) include an id that the library uses
to retrieve the corresponding tuple encryption type and keys
from the repository. If the operation indicated in a field is
not compatible with the encryption defined with the crypt
command, the command returns an error.

The library uses the DepSpace client library to send to the
servers the command and the fields. If the command is an
out, the fields are encrypted with the scheme defined in the
tuple encryption type and the keys previously stored. If the
command involves reading tuples, it contains the operation
and encrypted values. Note that each field of each id has its
own key (or key pair for RSA), but the same field for the same
id is always encrypted with the same key. When the library
receives a reply from the servers, it does the opposite, i.e., it
decrypts the encrypted fields using the corresponding schemes
and keys.

Server side – The server-side handles different commands in
different ways. The out command is executed the same way
as in DepSpace. The fields may be encrypted but they come
encrypted from the client so the tuple is stored unmodified.
The inp and rdp commands were modified using DepSpace’s
extension mechanism in order to support the =, <>, >,
>=, <, <=, and text search operations over encrypted data,
returning one of the matching tuples. The rdall and inall
commands work similarly, as rdp and inp, but return all
matching tuples. The rdSum and rdProd commands are im-
plemented as a modification of the original rdAll command
that returns a single tuple with the relevant fields respectively
added or multiplied.

IV. EXPERIMENTAL EVALUATION

We did a set of experiments to evaluate the performance of
HomomorphicSpace. The experiments were executed in two
personal computers. The first had an Intel(R) Core(TM) i7-
3537U CPU @ 2.00 GHz, 4 GB RAM, and Windows 8.1 (64
bits). The second had an Intel(R) Core(TM)2 Duo CPU U9400
@ 1.40 GHz, 3,5 GB RAM, and Ubuntu 15.10 (64 bits). The
software was executed using Java 1.8 with Oracle JDK in the
Windows Machine and OpenJDK in the Linux Machine. The
2 machines were connected by an IEEE 802.11b/g/n switch
(up to 54 Mbps).

We used the Linux machine to run the client, and the Win-
dows machine to run the servers. Although we used a single
machine for the server-side, it contained 4 server replicas.
The client-side application had a command line interface that
allows writing commands to be executed by the tuple space.
The performance of tuple space operations depends on the

TABLE II
EXACT MATCH EXECUTION TIMES (MS)

Encryption used out 100 tuples rdp 1 tuple inAll
No encryption 3659 ± 465 30 ± 5 235 ± 39
Deterministic 3747 ± 724 35 ± 5 342 ± 62
Order Preserving 3771 ± 580 32 ± 8 312 ± 75

load of the space, so we started all the experiments with an
empty tuple space.

1) Performance of tuple exact matching with encrypted
fields: In order to evaluate the performance of exact matching
(equality) with encrypted fields for the relevant encryption
schemes (and no encryption), we made the following test:
(1) insert (out) 100 tuples with a single field in the tuple
space, which are encrypted in the cases of Determinist and
Order Preserving encryptions; (2) execute an exact match with
rdp value and decrypt the tuple retrieved (if encrypted); (3)
retrieve all tuples from the space with inAll * and decrypt
the 100 tuples (if encrypted).

The tests made were all exact match (equality), indepen-
dently of the encryption scheme or no encryption used (see
Step 2 above). However, the performance for inequalities
(different, greater than, greater or equal to, . . .) would be
very similar as all of them are simple byte comparisons. Each
test was executed 30 times and the times for the three steps
were measured. The results are in Table II. A first conclusion
from the table is that encryption has no impact in the match
operations, as the comparisons without encryption (2nd row)
and with encryption (3rd and 4th rows) take very similar
times (column for command rdp). A second conclusion is
that the use of encryption (3rd/4th rows versus 2nd row) did
not cause observable delay in the experiments (2nd and 4th
columns). This result is consistent with the values obtained for
the library, with encryption/decryption times that are fractions
of a millisecond. Furthermore, the encryption/decryption load
is at the client, not at the server side, so it has no impact in
the capacity of the servers to process requests.

2) Performance of the ordered operations: In order to
evaluate the performance of the ordered operations we made
the following test: (1) insert (out) 100 tuples with a single
field in the tuple space, with values from 0 to 99, encrypted
with the Order Preserving scheme; (2) execute an rdp (read
one matched tuple), with the parameters indicated in the first
column of Table III and decrypt it; (3) execute an inAll (read
and delete all matched tuples), with the parameters indicated
in the first column of Table III and decrypt. The test was
repeated 30 times.

We can observe in the table that the execution times of
the rdp command are all inside the deviation intervals of
each other, meaning that the type of match does not affect the
execution times. For the inAll operation we can see that the
slower operation in the one that reads all the tuples (*), the
second slower is the one that reads all minus one (<>), and
the faster operation is the one that reads just one tuple (=).
The other operations have execution times somewhere in the
middle. This allow us to conclude that the execution time of

TABLE III
ORDERED OPERATIONS EXECUTION TIMES

Condition rdp (ms) inAll (ms) Tuples selected
∗ (match all) 35 ± 8 257 ± 27 100
= (match) 29 ± 9 33 ± 22 1
<> 50 28 ± 6 209 ± 7 99
< 50 31 ± 7 195 ± 46 50
<= 50 30 ± 8 174 ± 21 51
> 50 29 ± 7 181 ± 26 49
>= 50 34 ± 8 204 ± 53 50

the inAll operation depends not on the type of comparison,
but on the number of tuples retrieved. This is caused by the
communication delay caused by more data.

Acknowledgements This work was supported by the European Com-
mission through project H2020-653884 (SafeCloud) and by national
funds through Fundação para a Ciência e a Tecnologia (FCT) with
reference UID/CEC/50021/2013 (INESC-ID).

REFERENCES

[1] Cloud Security Alliance, “The notorious nine: Cloud computing top
threats in 2013,” Feb. 2013.

[2] F. Rocha and M. Correia, “Lucy in the sky without diamonds: Stealing
confidential data in the cloud,” in Proc. 1st DCDW Workshop, 2011.

[3] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in Proc.
41st Annual ACM Symposium on Theory of Computing, 2009.

[4] M. Van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, “Fully
homomorphic encryption over the integers,” in Advances in Cryptology
– EUROCRYPT 2010. Springer, 2010.

[5] M. Yagisawa, “Fully homomorphic encryption without bootstrapping,”
Cryptology ePrint Archive, Report 2015/474, 2015.

[6] K. Lauter, M. Naehrig, and V. Vaikuntanathan, “Can homomorphic en-
cryption be practical?” in Proc. 3rd ACM Workshop on Cloud Computing
Security, 2011.

[7] A. Boldyreva, N. Chenette, Y. Lee, and A. O’Neill, “Order-preserving
symmetric encryption,” in Proc. 28th Annual International Conference
on Advances in Cryptology, 2009.

[8] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou, “Privacy-preserving multi-
keyword ranked search over encrypted cloud data,” IEEE Transactions
on Parallel and Distributed Systems, vol. 25, no. 1, Jan 2014.

[9] B. Ferreira, J. Rodrigues, J. Leitão, and H. Domingos, “Privacy-
preserving content-based image retrieval in the cloud,” CoRR, vol.
abs/1411.4862, 2014.

[10] S. Faber, S. Jarecki, H. Krawczyk, Q. Nguyen, M. Rosu, and M. Steiner,
“Rich queries on encrypted data: Beyond exact matches,” in Computer
Security - ESORICS, 2015.

[11] R. A. Popa, C. Redfield, N. Zeldovich, and H. Balakrishnan, “CryptDB:
Protecting confidentiality with encrypted query processing,” in Proc.
23rd ACM Symposium on Operating Systems Principles, 2011.

[12] M. Burrows, “The Chubby lock service for loosely-coupled distributed
systems,” Proc. 7th Symposium on Operating Systems Design and
Implementation, 2006.

[13] J. Baker, C. Bond, J. Corbett, and J. Furman, “Megastore: Providing
scalable, highly available storage for interactive services.” in Proc. 5th
Biennal Conference on Innovative Data Systems Research, 2011.

[14] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “ZooKeeper: Wait-free
coordination for Internet-scale systems,” in Proc. 2010 USENIX Annual
Technical Conference, 2010.

[15] GigaSpaces, “XAP 9.0 documentation – product overview – concepts,”
http://wiki.gigaspaces.com/wiki/display/XAP9/Concepts, 2011.

[16] A. N. Bessani, E. P. Alchieri, M. Correia, and J. S. Fraga, “DepSpace:
a Byzantine fault-tolerant coordination service,” in Proc. 3rd ACM
SIGOPS/EuroSys European Systems Conference, Apr. 2008.

[17] T. Distler, C. Bahn, A. Bessani, F. Fischer, and F. Junqueira, “Extensible
distributed coordination,” in Proc. 10th ACM SIGOPS/EuroSys European
Systems Conference, 2015.

[18] D. Gelernter, “Generative communication in Linda,” ACM Transactions
on Programing Languages and Systems, vol. 7, no. 1, Jan. 1985.

