
Byzantine Fault-Tolerant State Machine Replication
with Twin Virtual Machines

Fernando Dettoni∗, Lau Cheuk Lung∗, Miguel Correia† and Aldelir Fernando Luiz‡
∗Department of Informatics and Statistics

Federal University of Santa Catarina, Florianópolis, Brazil – Email: {fdettoni, lau.lung}@inf.ufsc.br
†INESC-ID, Instituto Superior Técnico

Technical University of Lisbon, Lisboa, Portugal – Email: miguel.p.correia@ist.utl.pt
‡Department of Automation and Systems

Federal University of Santa Catarina, Florianópolis, Brazil – Email: aldelir@das.ufsc.br

Abstract—The reliability and availability of distributed services
can be ensured using replication. We present an architecture
and an algorithm for Byzantine fault-tolerant state machine
replication. We explore the benefits of virtualization to reliably
detect and tolerate faulty replicas, allowing the transformation of
Byzantine faults into omission faults. Our approach reduces the
total number of physical replicas from 3f+1 to 2f+1. It is based
on the concept of twin virtual machines, which involves having
two virtual machines in each physical host, each one acting as
failure detector of the other.

Index Terms—Byzantine fault tolerance; intrusion tolerance;
state machine replication; distributed systems; virtualization

I. INTRODUCTION

Computing systems have been becoming more and more
critical, so they have to operate correctly even in presence of
faults. There are several classes of faults, ranging from acci-
dental crash faults to arbitrary faults, often called Byzantine
[1]. The latter is the class that is more generic so the one
that should be considered in the design of critical systems.
In other words, to ensure that these systems stay reliable and
available it is necessary to develop Byzantine fault tolerance
(BFT) mechanisms.

One of the most used fault tolerance approaches in this
context is state machine replication (SMR) that consists es-
sentially in replicating deterministic state machines in different
hosts [2]. Several BFT SMR algorithms were developed in the
past decade (e.g., [3], [4], [5], [6], [7]). PBFT [3] was the first
that can be considered to be practical, therefore it is a kind
of a baseline in the area, from which many later algorithms
evolved [4], [5], [6], [7].

Virtualization can also be considered a Byzantine fault
tolerance technique, in the sense that it introduces an isola-
tion layer between virtual machines. Several approaches use
virtualization to protect some components from others’ failure
or intrusion [8], [9], [10]. On the contrary to SMR and failure
detectors, virtualization is widely adopted by industry; for
instance, it is an essential technology in cloud computing
services such as Amazon Web Services and Windows Azure.

This work was partially supported by the FCT through project RC-Clouds
(PTDC/EIA-EIA/115211/2009) and contract PEst-OE/EEI/LA0021/2011
(INESC-ID) and CNPq Proc. 560258/2010-0.

PBFT and other BFT SMR algorithms have a considerable
implementation cost because they require n ≥ 3f + 1 replicas
to tolerate up to f faulty. To reduce this cost, some algorithms
use a trusted component to constrain the behavior of faulty
replicas, requiring only n ≥ 2f + 1 replicas [11], [6], [7].
Two recent approaches run only f + 1 replicas and keep 2f
replicas on standby, with lower consumption of CPU time,
but requiring some delay to activate standby replicas in case
a failure is suspected [12], [13].

This paper explores another point of the design space. We
present TwinBFT, a new efficient BFT SMR algorithm based
on virtualization. We reduce the number of physical machines
from n ≥ 3f + 1 to n ≥ 2f + 1, to tolerate f faults.
Furthermore, we reduce the number of communication steps in
the normal case from 5 (as PBFT and related algorithms) to 3,
without speculation [5]. To our knowledge, this is the first non-
speculative algorithm with this number of steps. Speculation
has the drawbacks of involving the participation of the client
in the agreement and the ability to rollback operations [5], [7].

Our approach consists in using a set of twin virtual ma-
chines. Every virtual machine executes the same service and
each pair of twins runs in one of n ≥ 2f + 1 physical hosts.
Each pair of twins plays the traditional role of a replica in a
SMR service. The main idea is to use each virtual machine
as a failure detector of its twin: both twins must provide the
same reply to every request, otherwise the twins suspect of
each other, the physical node (a replica) is considered faulty
and its messages are ignored by the rest. This way, Byzantine
faults are transformed into omissions that are tolerated by the
state machine replication algorithm. Host and virtual machine
crashes are particular cases of omissions, which are tolerated
the same way. Notice that we consider twin virtual machines
for the sake of simplicity; the approach might be trivially
generalized to any number of virtual machines per host.

We do not defend that TwinBFT is the best solution for all
scenarios. It seems adequate for companies open to the use
of virtualization, such as cloud computing service providers.
It may also be appealing for companies reluctant to the use
of trusted components or that cannot wait for the activation
of standby replicas in the case of failure. In these cases,

an efficient BFT SMR algorithm with only 2f + 1 physical
hosts (4f + 2 virtual machines) is an interesting solution.
Nevertheless, we do believe that companies today are very
open to the use of virtualization, often reluctant to relying
on trusted components, and sometimes unwilling to wait for
replica activations.

The paper is organized as follows. Section II gives an
overview of related work. Section III describes the system
model and assumptions. A detailed explanation of the algo-
rithm is given in Section IV. Section V presents the evaluation
of algorithm and the Section VI concludes the paper.

II. RELATED WORK

Several works on BFT SMR appeared in the last decade.
PBFT is often considered to be the first practical algorithm
in the area [3]. Although its performance seems adequate for
many applications, its costs are considerable, requiring at least
4 replicas (n = 3f+1 with f = 1) and 5 communication steps
in normal operation (worse in case there are faults). Several
algorithms have evolved PBFT with two goals: reduce the
number of replicas and improve performance.

a) Reducing the number of replicas: Yin et al. intro-
duced an architecture separating services in two layers: one
responsible for agreement, with 3f + 1 replicas; another one
for executing the requests, with only 2f + 1 replicas [4].

Correia et al. presented the first solution to execute a BFT
SMR with only 2f + 1 replicas, using a trusted distributed
component [11]. Later, another work presented the first al-
gorithm requiring only 2f + 1 replicas based on a trusted
local component, using the abstraction of attested append-
only memory [6]. Recently, Veronese et al. [7] proposed two
algorithms based on a simple trusted component that just
supplies unique message identifiers. The first one, MinBFT,
reduced the number of necessary replicas to 2f + 1 and the
number of communication steps to 4. The second, a speculative
version called MinZyzzyva, reduced the communication steps
even further, to 3, keeping the number of replicas in 2f + 1.

SMIT takes advantage of virtualization to reduce the number
of replicas to 2f + 1, leveraging the secure communication
between replicas provided by the VMM / hypervisor [14].
That approach, however, requires all replicas to run on the
same physical host, so it does not tolerate crash faults on the
physical machine, unlike the approach in this paper.

Another work based on the idea of two replicas watching
each other is presented in [15]. That work is based on the
notion of signal-on-fail. The algorithm presented needs 4f +2
physical machines and requires a synchronous (and trusted)
communication channel between each pair of replicas, which
is problematic to implement in practice.

b) Improving performance: Several works presented so-
lutions to improve the performance of PBFT. Cowling et
al. presented HQ, a quorum based protocol with very good
performance when there is no concurrency to access data units
[16]. Kotla et al. presented Zyzzyva, an algorithm able to
reduce the number of communication steps in the absence
of faults [5]. Instead of trying to reach an agreement before

sending the reply to the client, the service replies speculatively.
The service needs to execute the request again and reach an
agreement if the replies received by the client differ from each
other. This approach is efficient in executions that are free
of failures, but requires the the ability to rollback operations,
something that is not possible in many services.

c) Virtualization: Several works use virtualization to
isolate software components. Two of the first use virtualization
to protect an intrusion detector from intruders [9], [10], and
a more recent one uses the same idea to protect a honeypot
monitor [8]. Nevertheless, the hypervisor security is mandatory
to obtain isolation so some works studied how to improve
this security. Murray et al. proposed disaggregation of the
virtualization system as a solution to reduce the size of the
trusted computing base of the system [17]. NoHype goes
further by removing the hypervisor of the way and executing
the virtual machines natively on the hardware [18].

III. SYSTEM MODEL

The architecture of the system is presented in Figure 1.
The system is composed by a set of n physical hosts H
= {h1, h2, . . . , hn}, where n ≥ 2f + 1 and f is the
maximum number of faulty hosts at any time. Each host
contains a VMM (virtual machine monitor) or hypervisor with
two virtual machines (VMs), called twin virtual machines,
running one process each. Both processes {pi, p′i} execute the
same service, and communicate between each other to validate
each message before sending it to other processes. We assume
that virtualization provides isolation between the VMs and the
VMM / hypervisor.

Fig. 1. The twin virtual machines architecture.

We assume that at most f VMs can fail arbitrary (or “be
Byzantine”), but no more than one in the same physical host.
We say that such process is faulty, otherwise we say it is
correct. When a process is faulty, the validation mechanism
transforms this fault into an omission of its host. Therefore, we
also assume that up to f physical hosts can be faulty, but only
by crashing (stopping to operate) or by omission (not sending
some of the messages it should). These faults can be accidental
or due to an arbitrary failure in one of it is processes/VMs.

In practice the assumptions about the limit of f faults and
that no two processes are faulty in the same host can only be
enforced optimistically by resorting to software diversity, i.e.,
to different implementations of the process at each replica [19],
[20]. This diversity reduces the chance of more than one VM
at the same physical host being compromised simultaneously.

No assumptions are made about the time needed to compute
a request. The communication between different VMs inside
the same host is made through a shared memory space,
called postbox. The processes at different hosts communicate
through the network, by message passing only. This network
can fail to deliver, deliver out of order, delay, or duplicate
messages. We make the same weak synchrony assumption
about communication as PBFT for liveness [3].

Each host can assume two different roles: (1) primary
host, which is responsible for defining the order for executing
clients’ requests; and (2) backup host, which executes the
requests following the order proposed by the primary. Within
a primary host, a process can assume two possible roles: (1)
leader, which is responsible for assign the sequence number
for client’s requests; and (2) follower, which executes the
requests following the order defined. All the processes within
backup hosts are considered followers. The primary host hi
is the one for i = v mod |S|, where v is the current view
(details later). The primary leader process within a server is,
by definition, pi.

We use cryptographic techniques to authenticate messages
and ensure the authenticity of messages. Each pair of processes
share among each other a secret key used to generate a vector
of MACs (message authentication codes) [21] with a valid
MAC for each process. We call these MACs signatures and
say that a message with a vector of MACs is signed.

As mentioned in the introduction, we consider only the
case of each physical machine having two VMs. This model,
however, can easily be generalized to more VMs, following
the condition of nVM ≥ 2fVM + 1, where fVM is the
maximum number of faulty virtual machines at the same host.
In this case, a host will be considered faulty if a majority of
VMs (fVM + 1) returns the same reply.

IV. TWINBFT

TwinBFT implements state machine replication in a set of
processes and hosts. The replicas move through a succes-
sion of configurations called views. In each view, there is a
primary/leader replica pj that is responsible for defining the
request order and forward it to all replicas. The state machine
has to be deterministic and all replicas have to start in the same
state [2]. In this section we explain TwinBFT in comparison
to PBFT, following a common approach in the BFT literature.

A. Properties

Following the state machine replication approach, our algo-
rithm has to ensure the following properties:
• Total Order (safety): a request is executed sequentially

and in the same order on every replica;

• Termination (liveness): a request issued by a client is
eventually executed, regardless of the existence of faults.

Our algorithm provides both safety and liveness, assuming
that no more than f = [n−1

2] hosts are faulty and there is
at least one correct process p in each host. To ensure that
all replicas will execute the requests in the same order, all
the replicas follow the order defined by the leader and the
leader can be assumed correct if the order proposed by the
leader is signed by both processes at the primary host. A
consensus algorithm is not necessary because the rest of the
replicas monitor the behavior of the leader and change it
if it misbehaves (details later). Our protocol ensures safety
regardless of timing, but to ensure liveness we need the weak
synchrony assumption mentioned in Section III.

B. The Algorithm

In this section, we will discuss the TwinBFT algorithm in
detail. In Figure 2 we show a time diagram of the algorithm
normal operation to help understanding it. The figure uses f =
1, so there are three hosts, each one with two VMs. The pairs
of VMs communicate using the postbox, which is faster than
the network by using a shared memory abstraction provided
by the VMM.

Fig. 2. Time diagram of TwinBFT in normal operation with f = 1.

The algorithm works basically as follows:
1) Client issues a request to both VMs in the primary host;
2) The primary’s leader pi defines a sequence number and

posts an “ORDER” message on the postbox;
3) The primary’s follower p′i reads the message from the

postbox, gets the sequence number and posts on post-
box an “ORDER” message with the sequence number
received;

4) Both VMs sign the “ORDER” read from their twin and
send it to the backup replicas;

5) As soon as each VM inside a backup replica receive
the message “ORDER”, they execute the operation, and
post a signed “REPLY” on the postbox;

6) When a VM reads a “REPLY”, it compares with the one
computed locally and if all fields matches, attaches its
own signature to the message and sends it to client;

7) If the client receives at least f+1 correctly signed replies
from distinct physical replicas, it accepts the result.

The part of the algorithm executed by the clients is shown
in Algorithm 1. The client sends a request to the service (line
3) and waits until it receives at least f + 1 valid replies from

Algorithm 1 Client-side
1: procedure REQUEST . Issues new request
2: ∆c ← default timeout
3: multi_send(〈REQUEST, c, seq, op〉σc) . Send request to both processes at the

primary host
4: repeat
5: buffer ← buffer ∪ recv()
6: until f + 1 matching replies ∃ buffer /* Timer in a separated

thread */
7: if ∆c expired then
8: multi_send(〈REQUEST, c, seq, op〉σc). Send the request to all the replicas
9: end if

10: end procedure

Algorithm 2 Normal-case operation algorithm
/* Task 1: network */

1: loop
2: msg ← receive()
3: if received (REQUEST) then
4: if is the primary leader then
5: n← n+ 1
6: postbox.append(〈〈ORDER, pi, v, n, dm〉σpi , msg〉)
7: else if is the primary follower then
8: buffer ← buffer ∪msg
9: else

10: send msg to primary
11: starts ∆p

12: end if
13: else if received (ORDER) then
14: stops ∆p

15: postbox.append(〈REPLY, pi, v, seq, c, res〉 >σpi)
16: end if
17: end loop

/* Task 2: postbox */
18: loop
19: msg ← postbox.read()
20: if received (ORDER) then
21: if all parameters corresponds the ones locally computed then
22: if is the primary follower then
23: postbox.append(〈〈ORDER, pi, v, m.n, dm〉σpi , msg〉)
24: end if
25: multicast(〈〈〈ORDER, p′i, v, n, dm〉σ

p′
i

〉σpi , msg〉)

26: end if
27: else if received (REPLY) then
28: if all parameters corresponds the ones locally computed then
29: reply_to_client(〈〈REPLY, p′i, v, seq, c, res〉σ

p′
i

〉σpi)

30: end if
31: end if
32: end loop

distinct replicas (lines 4-6). The request message has the form
〈REQUEST, c, seq, op〉σc , where c is the client id, seq is a
request id on the client, and op is the operation to be executed
on the service. If the client does not receive f + 1 messages
soon enough, it multicast the request to all replicas (line 8).

C. Normal Case Operation

The Algorithm 2, executed by the replicas, has two con-
current tasks. Task 1 is responsible for reading the messages
received from the network. Task 2 is responsible for reading
the messages from the postbox, posted by the twin. The state
of each process is composed by the state of the service, a
message buffer and the current view number. This state is
shared among the tasks.

When the primary’s leader process pi receives a request
from a client, it generates a new sequence number n and
creates a message 〈〈ORDER, pi, v, n, dm〉σpi , m〉, where v is
the current view number, and dm is the signature of message
m (lines 4-6). As soon as p′i reads the pi “ORDER” message
from the postbox and has the “REQUEST” message in the

message buffer, it gets the sequence number proposed by pi,
creates an “ORDER” message and posts it on the postbox
(line 23). When each one reads an “ORDER” message from
the postbox, it verifies if all parameters corresponds to the
ones computed locally and, if yes, adds its own signature to
the twin message and multicasts it to the backups (line 25).

A correct replica considers an “ORDER" message it re-
ceived valid if:
• The message is correctly signed, i.e., if received from the

network signed by both twin machines on the replica, and
if received from the postbox signed by its twin process.

• The view in the message is the current view.
• The replica has not accepted another “ORDER” message

with the same sequence number for a different request.
• The sequence number is between a low and high water

marks h and H (in practice, if this verification is made
when the primary’s follower reads the “ORDER” mes-
sage from postbox, a backup replica will never receive a
message outside these water marks).

Upon a pair of twin processes receiving an “ORDER”
message, each one verifies if the message is valid. If yes,
it executes the operation and creates a message 〈REPLY, pi,
v, seq, c, res〉σpi , where res is the result of executing the
operation, and posts it on the postbox (line 15). Once the
other twin reads the “REPLY” from the postbox, it compares
each parameter of the message with those it computed. If all
parameters are identical, it signs the message generated by its
twin and sends it to the client (line 29).

When the client receives a “REPLY” message, it accepts it
as valid if the following conditions hold:
• Is is signed by the two processes of the sending host.
• The client has not yet received a valid reply to the same

request from any of the processes on the physical host.
The client waits until it has received at least f + 1 valid

messages from the replicas to accept the result. If it does
not receive these messages soon enough, it multicast the
“REQUEST” to all replicas (lines 7-9).

D. Garbage Collection

To prevent the system from running out of memory,
TwinBFT has a mechanism to discard old messages stored
on message buffers. To achieve this, the algorithm generates
a checkpoint periodically, after some constant number of
requests. To generate the checkpoint, each process generates
a message 〈CHECKPOINT, pi, v, n, d〉σpi , where n is the
number of the last processed request and d is a signature of
pi current state, and posts it on the postbox.

Each twin machine reads the message from the postbox
and as soon as it reaches the same checkpoint, it confirms if
the state received is the same as the local state and, if yes,
attaches its own signature in the “CHECKPOINT” message
and multicasts it to all other replicas. When a process receives
f + 1 “CHECKPOINT” messages properly signed and from
distinct physical hosts hi for the same view v, sequence
number n and state d, it accepts this as the last valid checkpoint

Algorithm 3 View change algorithm
/* Task 1: network */

1: loop
2: msg ← receive()
3: if received (VIEW-CHANGE) then
4: buffer ← buffer ∪msg
5: if buffer contains at least one VIEW-CHANGE with n = msg.n ∧ d =
msg.d then

6: send msg to primary
7: if i = msg.v mod |S| then
8: postbox.append(〈NEW-VIEW, pi, msg.v, V, P〉σpi)
9: end if

10: end if
11: else if received (NEW-VIEW) then
12: buffer ← buffer ∪msg
13: for all req in msg.P do
14: ensures req is processed and stored in its log.
15: end for
16: end if
17: end loop
/* Task 2: postbox */

1: loop
2: msg ← postbox.read()
3: if received f + 1 (VIEW-CHANGE) then
4: if all parameters corresponds the ones locally computed then
5: multi_send(〈〈VIEW-CHANGE, p′i, v+1, n, C, P〉σ

p′
i

〉σpi)

6: end if
7: else if received (NEW-VIEW) then
8: if all parameters corresponds the ones locally computed then
9: multi_send(〈〈NEW-VIEW, p′i, v+1, V, P〉σ

p′
i

〉σpi)

10: end if
11: end if
12: end loop
/* Task 3: timeout */

1: procedure TIMEOUT_EXPIRE . When expiring timeout ∆p

2: postbox.append(〈VIEW-CHANGE, pi, v+1, n, C, P〈σpi)
3: end procedure

and removes from the message buffer all the messages with
the sequence number lesser than n.

E. View Change Protocol

The main function of TwinBFT’s view change protocol is
to keep the service making progress even on the presence of
a faulty primary. If the primary if faulty, the backup replicas
may, for instance, not receive valid “ORDER” messages, so
they must elect a new primary. Whenever a client does not
receive enough valid replies to accept the result, it multicasts
the request to all processes in the system. If a backup replica
receives a request directly from the client, it verifies if it
has already processed it. If yes, it just resends the reply sent
previously; otherwise it forwards the request to both primary
processes {pi, p′i} and starts a local timer ∆p (lines 10-11).

When receiving the corresponding “ORDER” message from
the primary, the timer ∆p is canceled (line 14) and the
algorithm continues normally. If no “ORDER” message is
received until the the timer expires, the process p starts the
view change protocol of Algorithm 3, posting on the postbox
a message 〈VIEW-CHANGE, pi, v+1, n, C, P〉σpi , where n
is the sequence number of the last valid checkpoint, C is a
set composed by f + 1 “CHECKPOINT” messages asserting
the last valid checkpoint, and P is a set with all the requests
processed after the last checkpoint (line 2). If its twin agrees
with the view change by verifying if the “VIEW-CHANGE”
read from the postbox is equal to the one generated locally. If
so, p attaches its own signature to the message received from
the postbox and multicasts it to all processes (line 5).

Upon receiving f + 1 valid “VIEW-CHANGE” messages
from a physical host, possibly their own, the two processes
{pi, p′i} verify if their host hi is the new primary. If so, p
acknowledges the view change by creating and posting on the
postbox a message 〈NEW-VIEW, p, v+1, V, P〉σp , where V is
a set containing the “VIEW-CHANGE” messages sent by the
servers for the view v + 1, and P is a set containing all the
ORDER messages sent after the last valid checkpoint (lines 5-
8. When p reads from the postbox a “NEW-VIEW”, it verifies
if it is according with the one computed locally and, if it is,
signs and multicasts the message to all replicas (line 9).

When any process p receives a “NEW-VIEW” message
from the primary, it verifies if: (1) the message is properly
signed, (2) it contains a set V with f + 1 valid “VIEW-
CHANGE” messages. If the conditions are satisfied, it re-
executes all the requests contained in P for the new view (lines
11-14).

V. EXPERIMENTAL EVALUATION

For evaluation purposes, we developed a prototype for
TwinBFT in Java 1.6, in which the communication channels
were implemented through the Java NIO library, using TCP
with MACs. We run our experiments on three servers Intel
Core i7 3.8Ghz with Debian 7.0 “wheezy” (Kernel 3.2.0 x86-
64) and the Xen Hypervisor 4.1.3. Each virtual machine was
configured with 2GB of memory, 2 virtual CPUs, and SUN’s
JDK 1.6.0_29.

(a) Latency in normal operation.

(b) Throughput in normal operation and with
faults.

Fig. 3. Latency and throughput in normal operation.

We evaluated the latency and throughput of TwinBFT, which
are widely used metrics in the area as they give a simplified
assessment of a system’s efficiency [22]. The results were ob-
tained using microbenchmarks with different load conditions.

Latency, the time needed to obtain the reply to a request,
was obtained by having a single client sending one request
at a time. Throughput was obtained by measuring how many
requests the system can process by time unit. We evaluated the
system using microbenchmarks due to their ability to measure
the cost of running the system without the influence of the
application/service. The service considered was a stateless
service with null operations, with requests and reply sizes of
0KB and 4KB.

To evaluate the performance of algorithm, we execute the
algorithm in normal operation and with view changes. We sent
10,000 requests from a single client, at three different loads:
0/0, 0/4 and 4/0. They represent, respectively, a null request
and null reply, a null request and a 4KB reply, and a 4KB
request and a null reply. All the times were measured by the
client, by reading its local clock before issuing a request and
after receiving a valid reply.

In Figure 3(a), we show the different latencies in each
load. To obtain the latency, we sent requests individually and
sequentially getting the latency from the average response time
for all requests. The service provided by all the approaches
is the same, a null operation returning the same message in
the request to the reply. Our approach is compared with the
SMIT algorithm [14], which also uses virtual machines and
shared memory but does not tolerate crash faults. In the figure,
the term single is used to mean an execution of a service
without replication, hypervisor and virtual machines. Single
is a centralized service without any kind of replication and
the operations that are required to safely execute a replicated
operation. Similarly, single-VM applies to an execution of a
service inside a single virtual machine, also without replica-
tion. We can see that operations with large messages leads to
a big increase in the response time. We can optimize this by
letting the client choose one replica to send the complete reply
while the other ones just send a digest to the client.

The throughput shown in Figure 3(b) was calculated based
on the total time for the execution of 10,000 requests sent
simultaneously to the service. The left of the figure shows the
throughput in fault-free executions. The right (“TwinBFT-f”)
shows the throughput with 1% of requests affected by a faulty
primary, resulting in a view change.

VI. CONCLUSIONS

The paper presents TwinBFT, a BFT SMR architecture
and algorithm that leverages virtualization. TwinBFT requires
only 2f + 1 hosts, but does not need trusted components as
the other algorithms that require the same number of hosts.
Virtualization is currently a widely adopted technology, on the
contrary of trusted components. TwinBFT has also a number of
communication steps previously achieved only by speculative
algorithms, which have constraints such as the need of rolling
back operations.

REFERENCES

[1] L. Lamport, R. Shostak, and M. Pease, “The Byzantine generals prob-
lem,” ACM Trans. Program. Lang. Syst., vol. 4, no. 3, pp. 382–401, Jul.
1982.

[2] F. B. Schneider, “Implementing fault-tolerant services using the state
machine approach: a tutorial,” ACM Comput. Surv., vol. 22, no. 4, pp.
299–319, Dec. 1990.

[3] M. Castro and B. Liskov, “Practical Byzantine fault tolerance,” in
Proceedings of the 3rd Symposium on Operating Systems Design and
Implementation, 1999, pp. 173–186.

[4] J. Yin, J.-P. Martin, A. Venkataramani, L. Alvisi, and M. Dahlin, “Sep-
arating agreement from execution for Byzantine fault tolerant services,”
SIGOPS Oper. Syst. Rev., vol. 37, pp. 253–267, October 2003.

[5] R. Kotla, A. Clement, E. Wong, L. Alvisi, and M. Dahlin, “Zyzzyva:
speculative Byzantine fault tolerance,” Commun. ACM, vol. 51, pp. 86–
95, 2008.

[6] B.-G. Chun, P. Maniatis, S. Shenker, and J. Kubiatowicz, “Attested
append-only memory: making adversaries stick to their word,” in Pro-
ceedings of the 21st ACM Symposium on Operating Systems Principles,
October 2007, pp. 189–204.

[7] G. S. Veronese, M. Correia, A. N. Bessani, L. C., and P. Verissimo,
“Efficient Byzantine fault tolerance,” IEEE Transactions on Computers,
vol. 62, no. 1, pp. 16–30, 2013.

[8] X. Jiang and X. Wang, “Out-of-the-box monitoring of VM-based high-
interaction honeypots,” in Proceedings of the 10th International Sympo-
sium on Recent Advances in Intrusion Detection, Sep. 2007.

[9] T. Garfinkel and M. Rosenblum, “A virtual machine introspection based
architecture for intrusion detection,” in Proceedings of the Network and
Distributed Systems Security Symposium, Feb. 2003.

[10] M. Laureano, C. Maziero, and E. Jamhour, “Intrusion detection in
virtual machine environments,” in Proceedings of the 30th Euromicro
Conference, 2004, pp. 520–525.

[11] M. Correia, N. F. Neves, and P. Verissimo, “How to tolerate half less one
Byzantine nodes in practical distributed systems,” in Proceedings of the
23rd IEEE International Symposium on Reliable Distributed Systems,
2004, pp. 174–183.

[12] T. Distler, I. Popov, W. Schröder-Preikschat, H. P. Reiser, and R. Kapitza,
“SPARE: Replicas on hold,” in Proceedings of the 18th Network and
Distributed System Security Symposium, Feb. 2011, pp. 407–420.

[13] T. Wood, R. Singh, A. Venkataramani, P. Shenoy, and E. Cecchet, “ZZ
and the art of practical BFT execution,” in Proceedings of the 6th ACM
SIGOPS/EuroSys European Systems Conference, 2011, pp. 123–138.

[14] V. Stumm, L. C. Lung, M. Correia, J. da Silva Fraga, and J. Lau,
“Intrusion tolerant services through virtualization: A shared memory
approach,” in Proceedings of the 24th IEEE International Conference
on Advanced Information Networking and Applications, 2010, pp. 768
–774.

[15] D. Mpoeleng, P. Ezhilchelvan, and N. Speirs, “From crash tolerance
to authenticated Byzantine tolerance: A structured approach, the cost
and benefits,” in Proceedings of the IEEE/IFIP 33rd International
Conference on Dependable Systems and Networks, Jun. 2003, pp. 227–
236.

[16] J. Cowling, D. Myers, B. Liskov, R. Rodrigues, and L. Shrira, “HQ-
Replication: A hybrid quorum protocol for Byzantine fault tolerance,”
in Proceedings of 7th USENIX Symposium on Operating Systems Design
and Implementation, Nov. 2006, pp. 177–190.

[17] D. G. Murray, G. Milos, and S. Hand, “Improving Xen security through
disaggregation,” in Proceedings of the 4th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments, 2008, pp.
151–160.

[18] J. Szefer, E. Keller, R. B. Lee, and J. Rexford, “Eliminating the
hypervisor attack surface for a more secure cloud,” in Proceedings of
the 18th ACM Conference on Computer and Communications Security,
2011, pp. 401–412.

[19] M. Garcia, A. Bessani, I. Gashi, N. Neves, and R. Obelheiro, “OS
diversity for intrusion tolerance: Myth or reality?” in Proceedings of
the IEEE/IFIP 41st International Conference on Dependable Systems
and Networks, Jun. 2011, pp. 383 –394.

[20] I. Gashi, P. T. Popov, and L. Strigini, “Fault tolerance via diversity
for off-the-shelf products: A study with SQL database servers,” IEEE
Transactions on Dependable and Secure Computing, vol. 4, no. 4, pp.
280–294, 2007.

[21] G. Tsudik, “Message authentication with one-way hash functions,”
SIGCOMM Comput. Commun. Rev., vol. 22, no. 5, pp. 29–38, Oct.
1992.

[22] R. K. Jain, The Art of Computer Systems Performance Analysis:
Techniques for Experimental Design, Measurement, Simulation, and
Modeling. John Wiley & Sons, 1991.

